An Efficient FPGA Implementation of Izhikevich Neuron Model

Shiyu Yang, Peilin Liu, Jianwei Xue, Rongdi Sun, R. Ying
{"title":"An Efficient FPGA Implementation of Izhikevich Neuron Model","authors":"Shiyu Yang, Peilin Liu, Jianwei Xue, Rongdi Sun, R. Ying","doi":"10.1109/ISOCC50952.2020.9333014","DOIUrl":null,"url":null,"abstract":"This paper presents a modified Izhikevich neuron model replacing complex multiplication and division operations with simple binary-based shift operations. A counter-based adder circuit is designed to address the problem that multiple neurons fire spikes simultaneously to one neuron. The proposed model is implemented on FPGA. Results show that the hardware resource utilization of the proposed model is reduced by 87.2% compared with that of the original model and the highest operating frequency is increased from 123.8MHz to 291.8MHz.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a modified Izhikevich neuron model replacing complex multiplication and division operations with simple binary-based shift operations. A counter-based adder circuit is designed to address the problem that multiple neurons fire spikes simultaneously to one neuron. The proposed model is implemented on FPGA. Results show that the hardware resource utilization of the proposed model is reduced by 87.2% compared with that of the original model and the highest operating frequency is increased from 123.8MHz to 291.8MHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Izhikevich神经元模型的高效FPGA实现
本文提出了一种改进的Izhikevich神经元模型,用简单的基于二进制的移位运算代替复杂的乘法和除法运算。设计了一种基于计数器的加法器电路来解决多个神经元同时向一个神经元发射脉冲的问题。该模型在FPGA上实现。结果表明,该模型的硬件资源利用率比原模型降低了87.2%,最高工作频率从123.8MHz提高到291.8MHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1