Intelligent Fault Analysis Decision Flow in Semiconductor Industry 4.0 Using Natural Language Processing with Deep Clustering

Kenneth Ezukwoke, H. Toubakh, Anis Hoayek, M. Batton-Hubert, X. Boucher, Pascal Gounet
{"title":"Intelligent Fault Analysis Decision Flow in Semiconductor Industry 4.0 Using Natural Language Processing with Deep Clustering","authors":"Kenneth Ezukwoke, H. Toubakh, Anis Hoayek, M. Batton-Hubert, X. Boucher, Pascal Gounet","doi":"10.1109/CASE49439.2021.9551492","DOIUrl":null,"url":null,"abstract":"Microelectronics production failure analysis is a time-consuming and complicated task involving successive steps of analysis of complex process chains. The analysis is triggered to find the root cause of a failure and its findings, recorded in a reporting system using natural language. Fault analysis, physical analysis, sample preparation and package construction analysis are arguably the most used analysis activity for determining the root-cause of a failure. Intelligent automation of this analysis decision process using artificial intelligence is the objective of the FA 4.0 consortium; creating a reliable and efficient semiconductor industry. This research presents natural language processing (NLP) techniques to find a coherent representation of the expert decisions during fault analysis. The adopted methodology is a Deep learning algorithm based on $\\beta$-variational autoencoder ($\\beta$-VAE) for latent space disentanglement and Gaussian Mixture Model for clustering of the latent space for class identification.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Microelectronics production failure analysis is a time-consuming and complicated task involving successive steps of analysis of complex process chains. The analysis is triggered to find the root cause of a failure and its findings, recorded in a reporting system using natural language. Fault analysis, physical analysis, sample preparation and package construction analysis are arguably the most used analysis activity for determining the root-cause of a failure. Intelligent automation of this analysis decision process using artificial intelligence is the objective of the FA 4.0 consortium; creating a reliable and efficient semiconductor industry. This research presents natural language processing (NLP) techniques to find a coherent representation of the expert decisions during fault analysis. The adopted methodology is a Deep learning algorithm based on $\beta$-variational autoencoder ($\beta$-VAE) for latent space disentanglement and Gaussian Mixture Model for clustering of the latent space for class identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自然语言处理和深度聚类的半导体工业4.0智能故障分析决策流程
微电子产品失效分析是一项耗时且复杂的任务,涉及复杂工艺链的连续分析步骤。触发分析以找到故障的根本原因及其发现,并使用自然语言记录在报告系统中。故障分析、物理分析、样品制备和包装结构分析可以说是确定故障根本原因最常用的分析活动。使用人工智能实现这种分析决策过程的智能自动化是fa4.0联盟的目标;打造可靠高效的半导体产业。本研究提出自然语言处理(NLP)技术,在故障分析过程中找到专家决策的连贯表示。采用的方法是一种基于$\beta$-变分自编码器($\beta$-VAE)的深度学习算法,用于潜空间解纠缠,高斯混合模型用于潜空间的聚类,用于类识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1