Low Cost Hand Gesture Control in Complex Environment Using Raspberry Pi

Chana Chansri, J. Srinonchat, E. Lim, K. Man
{"title":"Low Cost Hand Gesture Control in Complex Environment Using Raspberry Pi","authors":"Chana Chansri, J. Srinonchat, E. Lim, K. Man","doi":"10.1109/ISOCC47750.2019.9027669","DOIUrl":null,"url":null,"abstract":"This article focuses on implementation in an embedded system with Raspberry Pi to a standalone machine for controlling electronic devices which wirelessly controlled by a hand gesture in the complex environment background. This system uses the RGB camera in combination with Raspberry Pi, a popular device today due to the inexpensive price and reliable performance. The hand gesture detection in each frame uses the radian fingertip analysis technique, a new technique presented which does not require any data training. This technique provides a good robust for light effect and complex environment. The experiment had been tested with the America Sign Language fingerspelling 12 gestures, the results found that 90.83%.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"54 44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9027669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article focuses on implementation in an embedded system with Raspberry Pi to a standalone machine for controlling electronic devices which wirelessly controlled by a hand gesture in the complex environment background. This system uses the RGB camera in combination with Raspberry Pi, a popular device today due to the inexpensive price and reliable performance. The hand gesture detection in each frame uses the radian fingertip analysis technique, a new technique presented which does not require any data training. This technique provides a good robust for light effect and complex environment. The experiment had been tested with the America Sign Language fingerspelling 12 gestures, the results found that 90.83%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树莓派在复杂环境下的低成本手势控制
本文主要介绍如何在一个嵌入式系统中实现树莓派在一个独立的机器上控制电子设备,在复杂的环境背景下通过手势进行无线控制。该系统使用RGB相机与树莓派相结合,树莓派是当今流行的设备,因为价格便宜,性能可靠。每帧的手势检测采用弧度指尖分析技术,这是一种不需要任何数据训练的新技术。这种技术为光效和复杂环境提供了良好的鲁棒性。该实验用美国手语进行了12个手势的拼法测试,结果发现90.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-carrier Signal Detection using Convolutional Neural Networks An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22 nm FD-SOI A Low-Power 20 Gbps Multi-phase MDLL-based Digital CDR with Receiver Equalization Scaling Bit-Flexible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1