Mixed integral-differential skin-effect models for PEEC electromagnetic solver

G. Antonini, A. Ruehli, Lijun Jiang
{"title":"Mixed integral-differential skin-effect models for PEEC electromagnetic solver","authors":"G. Antonini, A. Ruehli, Lijun Jiang","doi":"10.1109/EPEPS.2011.6100220","DOIUrl":null,"url":null,"abstract":"Efficient modeling of the broadband skin-effect for conducting 3D shapes is a challenging issue for the solution of large electromagnetic problems. The inclusion of such models in an EM solver can be very costly in compute time and memory requirements. Several properties of a model are desirable for the solution of practical problems such as the broadband frequency domain or the time domain applicability. In this paper, we present a model which meets some of these challenges and which is suitable for the PEEC solution method.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient modeling of the broadband skin-effect for conducting 3D shapes is a challenging issue for the solution of large electromagnetic problems. The inclusion of such models in an EM solver can be very costly in compute time and memory requirements. Several properties of a model are desirable for the solution of practical problems such as the broadband frequency domain or the time domain applicability. In this paper, we present a model which meets some of these challenges and which is suitable for the PEEC solution method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEEC电磁求解器的混合积分-微分趋肤效应模型
对于大型电磁问题的解决来说,如何高效地建模导电三维形状的宽带趋肤效应是一个具有挑战性的问题。在EM求解器中包含这样的模型在计算时间和内存需求方面可能非常昂贵。模型的一些特性对于解决诸如宽带频域或时域适用性等实际问题是理想的。在本文中,我们提出了一个适合于PEEC求解方法的模型来应对这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations of pulse signals with X-parameters Extraction of jitter parameters from BER measurements Full-wave PEEC time domain solver based on leapfrog scheme Bended differential transmission line using short-circuited coupled line for common-mode noise suppression Deriving voltage tolerance specification for processor circuit design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1