Deep Convolutional Adversarial Network-Based Feature Learning for Tea Clones Identifications

Endang Suryawati, Vicky Zilvan, R. S. Yuwana, A. Heryana, D. Rohdiana, H. Pardede
{"title":"Deep Convolutional Adversarial Network-Based Feature Learning for Tea Clones Identifications","authors":"Endang Suryawati, Vicky Zilvan, R. S. Yuwana, A. Heryana, D. Rohdiana, H. Pardede","doi":"10.1109/ICICoS48119.2019.8982416","DOIUrl":null,"url":null,"abstract":"Tea is a commodity has a strategic role in the Indonesian economy. The cultivation of tea plants becomes very important in order to maintain the superior commodity, with respect to increase the production and/or improve the quality of tea. In a tea plantation management system, it is essential to identify the types of tea clones planted in the field. But, it requires human experts to distinguish one types of clones with another. The existence of an automatic clones identification is expected to make the identification easy, fast, accurate, and easily accessible for common farmers. In this work, we propose an unsupervised feature learning algorithm derived from Deep Convolutional Generative Adversarial Network (DCGAN) for automatic tea clone identification. The use of unsupervised learning enable us to utilize unlabeled data. Our experiments suggest the effectiveness of our method for tea clones detection task.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tea is a commodity has a strategic role in the Indonesian economy. The cultivation of tea plants becomes very important in order to maintain the superior commodity, with respect to increase the production and/or improve the quality of tea. In a tea plantation management system, it is essential to identify the types of tea clones planted in the field. But, it requires human experts to distinguish one types of clones with another. The existence of an automatic clones identification is expected to make the identification easy, fast, accurate, and easily accessible for common farmers. In this work, we propose an unsupervised feature learning algorithm derived from Deep Convolutional Generative Adversarial Network (DCGAN) for automatic tea clone identification. The use of unsupervised learning enable us to utilize unlabeled data. Our experiments suggest the effectiveness of our method for tea clones detection task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积对抗网络的茶叶克隆识别特征学习
茶叶是一种在印尼经济中具有战略性作用的商品。为了保持优质商品,增加茶叶产量和/或提高茶叶质量,茶树的种植变得非常重要。在茶园管理系统中,对田间种植的无性系品种进行识别是至关重要的。但是,这需要人类专家区分不同类型的克隆。自动克隆识别的存在有望使识别简单,快速,准确,方便普通农民使用。在这项工作中,我们提出了一种基于深度卷积生成对抗网络(DCGAN)的无监督特征学习算法,用于茶叶克隆的自动识别。使用无监督学习使我们能够利用未标记的数据。实验结果表明,该方法对茶叶无性系的检测任务是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1