J. Ong, W. Chiu, O. Lee, Hsiang-Hung Chang, Chih-Huang Chen
{"title":"Low temperature Cu/SiO2 hybrid bonding fabricated by 2-step process","authors":"J. Ong, W. Chiu, O. Lee, Hsiang-Hung Chang, Chih-Huang Chen","doi":"10.23919/ICEP55381.2022.9795579","DOIUrl":null,"url":null,"abstract":"In this investigation, die-to-die Cu/SiO2 hybrid bonding can be well bonded and obtain excellent bonding strength with Ar plasma pretreatment. The diameter of the microbumps is 8 μm along with 20 μm pitch. Results show that Cu joints can be well bonded under 150 °C ~ 200 °C for 1h in vacuum ambient after water fusion bonding followed by postbonding annealing at 175 °C~200 °C without any external pressure. Cross-sectional electron analysis shows no oxide bonding interface along 150 μm long and no gaps or cracks observed in Cu bonding. Bonding strength was measured by pull tests.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this investigation, die-to-die Cu/SiO2 hybrid bonding can be well bonded and obtain excellent bonding strength with Ar plasma pretreatment. The diameter of the microbumps is 8 μm along with 20 μm pitch. Results show that Cu joints can be well bonded under 150 °C ~ 200 °C for 1h in vacuum ambient after water fusion bonding followed by postbonding annealing at 175 °C~200 °C without any external pressure. Cross-sectional electron analysis shows no oxide bonding interface along 150 μm long and no gaps or cracks observed in Cu bonding. Bonding strength was measured by pull tests.