{"title":"Experimental and Numerical Study on Holding Power of Rectangular-Shaped Anchors","authors":"K. Toh, Yusuke Fukumoto, T. Yoshikawa","doi":"10.1115/OMAE2018-77814","DOIUrl":null,"url":null,"abstract":"This paper discusses the experimental and numerical investigations for the holding power of rectangular-shaped anchors. As the offshore developments are promoted, the mooring systems are often used as the station keeping systems of the marine floating structures. From a viewpoint of the energy consumption, the mechanical mooring systems with anchors are better than the dynamic mooring systems with thrusters. Up to now, however, the research and development regarding the mooring systems with the high holding anchors in the deep sea area, especially more than 500 m in depth, have hardly been carried out in Japan.\n In most cases, the conventional anchor shapes have experimentally and/or empirically been decided. In addition, only a few studies which relate the numerical analysis to the experimental test have been performed for the holding power. In order to obtain the optimal shape of anchors theoretically, therefore, the purpose of this study is to develop the estimation method for the holding power and to clarify the penetration mechanism of anchors in soil.\n In this paper, a series of experiments utilizing the small-sized anchor model is conducted. Here, the fluke shape of specimen is modeled by the rectangular flat plate for simplicity. From several experiments varying the geometric characteristics of the anchor model, the experimental results, e.g., the history of the holding power, the penetration depth, and the fluke surface angle at the maximum holding power, are obtained. Furthermore, the numerical simulation to evaluate the holding power is also carried out using the dynamic explicit non-linear finite element analysis (NLFEA) code, LS-DYNA, as well as the in-house distinct element method (DEM) code. From the comparison between the numerical results and the experimental results, the calculation accuracy is verified.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper discusses the experimental and numerical investigations for the holding power of rectangular-shaped anchors. As the offshore developments are promoted, the mooring systems are often used as the station keeping systems of the marine floating structures. From a viewpoint of the energy consumption, the mechanical mooring systems with anchors are better than the dynamic mooring systems with thrusters. Up to now, however, the research and development regarding the mooring systems with the high holding anchors in the deep sea area, especially more than 500 m in depth, have hardly been carried out in Japan.
In most cases, the conventional anchor shapes have experimentally and/or empirically been decided. In addition, only a few studies which relate the numerical analysis to the experimental test have been performed for the holding power. In order to obtain the optimal shape of anchors theoretically, therefore, the purpose of this study is to develop the estimation method for the holding power and to clarify the penetration mechanism of anchors in soil.
In this paper, a series of experiments utilizing the small-sized anchor model is conducted. Here, the fluke shape of specimen is modeled by the rectangular flat plate for simplicity. From several experiments varying the geometric characteristics of the anchor model, the experimental results, e.g., the history of the holding power, the penetration depth, and the fluke surface angle at the maximum holding power, are obtained. Furthermore, the numerical simulation to evaluate the holding power is also carried out using the dynamic explicit non-linear finite element analysis (NLFEA) code, LS-DYNA, as well as the in-house distinct element method (DEM) code. From the comparison between the numerical results and the experimental results, the calculation accuracy is verified.