Multilinear Compressed Sensing using Tensor Least Angle Regression (T-LARS)

Ishan Wickramasingha, S. Sherif
{"title":"Multilinear Compressed Sensing using Tensor Least Angle Regression (T-LARS)","authors":"Ishan Wickramasingha, S. Sherif","doi":"10.1145/3529570.3529571","DOIUrl":null,"url":null,"abstract":"Multilinear compressed sensing generalizes the compressed sensing formulation to tensor signals, where the tensor signal is reconstructed using much fewer samples obtained in a sparse domain by solving a multilinear sparse coding problem. The Kronecker-OMP, a generalization of Orthogonal Matching Pursuit (OMP) solves the L0 constrained multilinear sparse least-squares problems. However, with the problem dimensions and the number of iterations, the space and computational cost of Kronecker-OMP increase in the polynomial order. Authors have previously developed a generalized least-angle regression(LARS), known as Tensor Least Angle Regression (T-LARS), with a lower asymptotic space and computational complexity than Kronecker-OMP to efficiently solve both L0 and L1 constrained multilinear sparse least-squares problems. In this paper, we used T-LARS to solve multilinear compressed sensing problems and compared the results with Kronecker-OMP, where the T-LARS is 56 times faster than Kronecker-OMP in reconstructing the 3D PET-CT images using compressed sensing samples.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multilinear compressed sensing generalizes the compressed sensing formulation to tensor signals, where the tensor signal is reconstructed using much fewer samples obtained in a sparse domain by solving a multilinear sparse coding problem. The Kronecker-OMP, a generalization of Orthogonal Matching Pursuit (OMP) solves the L0 constrained multilinear sparse least-squares problems. However, with the problem dimensions and the number of iterations, the space and computational cost of Kronecker-OMP increase in the polynomial order. Authors have previously developed a generalized least-angle regression(LARS), known as Tensor Least Angle Regression (T-LARS), with a lower asymptotic space and computational complexity than Kronecker-OMP to efficiently solve both L0 and L1 constrained multilinear sparse least-squares problems. In this paper, we used T-LARS to solve multilinear compressed sensing problems and compared the results with Kronecker-OMP, where the T-LARS is 56 times faster than Kronecker-OMP in reconstructing the 3D PET-CT images using compressed sensing samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量最小角回归(T-LARS)的多线性压缩感知
多线性压缩感知将压缩感知公式推广到张量信号中,通过求解多线性稀疏编码问题,利用稀疏域获得的更少样本重构张量信号。Kronecker-OMP是正交匹配追踪(OMP)的推广,它解决了L0约束的多线性稀疏最小二乘问题。然而,随着问题的维度和迭代次数的增加,Kronecker-OMP的空间和计算成本呈多项式级增加。作者先前开发了广义最小角回归(LARS),称为张量最小角回归(T-LARS),具有比Kronecker-OMP更低的渐近空间和计算复杂度,可以有效地解决L0和L1约束的多线性稀疏最小二乘问题。在本文中,我们使用T-LARS来解决多线性压缩感知问题,并将结果与Kronecker-OMP进行了比较,其中T-LARS在使用压缩感知样本重建3D PET-CT图像时比Kronecker-OMP快56倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference and Prediction in Big Data Using Sparse Gaussian Process Method A SAR Image Denoising Method for Target Shadow Tracking Task Development of an English Teaching Robot for Japanese Students Joint Power and Bandwidth Allocation for 3D Video SoftCast Some Evaluations on Spectrogram Art Communications Exchanging Secret Visual Messages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1