p-GaN HEMT Hard Switching Fault Type Short-Circuit Detection Based on the Gate Schottky-Barrier Leakage Current and Using a Dual-Channel Segmented CMOS buffer Gate-Driver
{"title":"p-GaN HEMT Hard Switching Fault Type Short-Circuit Detection Based on the Gate Schottky-Barrier Leakage Current and Using a Dual-Channel Segmented CMOS buffer Gate-Driver","authors":"Y. Barazi, F. Richardeau, S. Vinnac, N. Rouger","doi":"10.1109/ISPSD57135.2023.10147669","DOIUrl":null,"url":null,"abstract":"This article presents an alternative solution to the short circuit challenges commonly faced by ultra-fast power transistors. Specially 650V p-GaN HEMTs, where the short-circuit timing capability is very critical, and the presence of thermal run-aways is very sensitive. In response to this issue, a dedicated approach to detect the short-circuit inserting an on-line monitoring gate-resistor through a dual-channel segmented CMOS Gate Driver is proposed. The short-circuit indicator under Hard Switch Fault is based on the Gate-Schottky-Barrier leakage current, which is translated on a voltage drop at the gate-source voltage. The detection circuit can be fully integrated in the IC with a low monitoring voltage. A dual-buffer IC prototype including impedance state and monitoring integrated circuit using XFAB XT018 0.18um CMOS SOI technology was performed. Parametric results show a robust and quick detection propagation delay around 580ns under VDS = 400V and V GS = 5V.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"2363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an alternative solution to the short circuit challenges commonly faced by ultra-fast power transistors. Specially 650V p-GaN HEMTs, where the short-circuit timing capability is very critical, and the presence of thermal run-aways is very sensitive. In response to this issue, a dedicated approach to detect the short-circuit inserting an on-line monitoring gate-resistor through a dual-channel segmented CMOS Gate Driver is proposed. The short-circuit indicator under Hard Switch Fault is based on the Gate-Schottky-Barrier leakage current, which is translated on a voltage drop at the gate-source voltage. The detection circuit can be fully integrated in the IC with a low monitoring voltage. A dual-buffer IC prototype including impedance state and monitoring integrated circuit using XFAB XT018 0.18um CMOS SOI technology was performed. Parametric results show a robust and quick detection propagation delay around 580ns under VDS = 400V and V GS = 5V.