Joint Extraction Model of Entities and Events

Can Tian, Yawei Zhao, Liang Ren
{"title":"Joint Extraction Model of Entities and Events","authors":"Can Tian, Yawei Zhao, Liang Ren","doi":"10.2991/ICMEIT-19.2019.117","DOIUrl":null,"url":null,"abstract":". Joint extraction of entities and events is an important task in information extraction. In order to obtain entities and events in the text simultaneously, in this paper we firstly propose a novel tagging scheme that can transform the joint extraction task to a tagging problem. Then, based on our tagging scheme, we use different end-to-end models to extract entities and events directly and we also propose an improved objective function with different parameters to express the importance of different labels. We conduct experiments on a financial dataset and the results show that our methods are better than other existing models.","PeriodicalId":223458,"journal":{"name":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMEIT-19.2019.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. Joint extraction of entities and events is an important task in information extraction. In order to obtain entities and events in the text simultaneously, in this paper we firstly propose a novel tagging scheme that can transform the joint extraction task to a tagging problem. Then, based on our tagging scheme, we use different end-to-end models to extract entities and events directly and we also propose an improved objective function with different parameters to express the importance of different labels. We conduct experiments on a financial dataset and the results show that our methods are better than other existing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实体和事件的联合抽取模型
. 实体和事件的联合抽取是信息抽取中的重要任务。为了同时获取文本中的实体和事件,本文首先提出了一种新的标注方案,将联合抽取任务转化为标注问题。然后,基于我们的标注方案,我们使用不同的端到端模型直接提取实体和事件,并提出了一个改进的目标函数,用不同的参数来表达不同标签的重要性。我们在一个金融数据集上进行了实验,结果表明我们的方法优于其他现有的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feedback-Based Scheduling for Load-Balanced Crosspoint Buffered Crossbar Switches Research on Traffic Congestion Resolution Mechanism based on Genetic Algorithm and Multi-Agent Decentralized Location Privacy Protection Method of Offset Grid Real-Time Bidding by Proportional Control in Display Advertising Simulation Analysis of Friction and Wear of New TiAl based Alloy Joint Bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1