Conduction-type dependence of thermal oxidation rate on SiC(0001)

Takuma Kobayashi, J. Suda, T. Kimoto
{"title":"Conduction-type dependence of thermal oxidation rate on SiC(0001)","authors":"Takuma Kobayashi, J. Suda, T. Kimoto","doi":"10.1109/IMFEDK.2014.6867060","DOIUrl":null,"url":null,"abstract":"The conduction-type dependent thermal oxidation rate in SiC was discovered. The oxidation was performed for SiC(0001) with nitrogen doping (n-type) in the range from 2.0×10<sup>16</sup> cm<sup>-3</sup> to 1.0×10<sup>19</sup> cm<sup>-3</sup>, and aluminum doping (p-type) in the range from 2.0×10<sup>15</sup> cm<sup>-3</sup> to 1.0×10<sup>19</sup> cm<sup>-3</sup>, exhibiting a clear dependence. For n-type SiC the oxide thickness increases for higher doping density, and for p-type the thickness decreases. Note that in the case of Si oxidation, there exists very little difference of oxidation rate between the conduction types in such low doping density, and the dependence is peculiar to SiC. The authors speculate the difference originates from the difference in carrier (electron/hole) density during the oxidation, which can reasonably explain the difference in the oxidation rate between Si and SiC.","PeriodicalId":202416,"journal":{"name":"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2014.6867060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The conduction-type dependent thermal oxidation rate in SiC was discovered. The oxidation was performed for SiC(0001) with nitrogen doping (n-type) in the range from 2.0×1016 cm-3 to 1.0×1019 cm-3, and aluminum doping (p-type) in the range from 2.0×1015 cm-3 to 1.0×1019 cm-3, exhibiting a clear dependence. For n-type SiC the oxide thickness increases for higher doping density, and for p-type the thickness decreases. Note that in the case of Si oxidation, there exists very little difference of oxidation rate between the conduction types in such low doping density, and the dependence is peculiar to SiC. The authors speculate the difference originates from the difference in carrier (electron/hole) density during the oxidation, which can reasonably explain the difference in the oxidation rate between Si and SiC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热氧化速率对SiC的传导型依赖性(0001)
发现了SiC的热氧化速率依赖于传导类型。在2.0×1016 cm-3 ~ 1.0×1019 cm-3范围内掺杂氮(n型),在2.0×1015 cm-3 ~ 1.0×1019 cm-3范围内掺杂铝(p型),对SiC(0001)进行了氧化,表现出明显的依赖性。对于n型碳化硅,随着掺杂密度的增加,氧化物厚度增加,而对于p型碳化硅,氧化物厚度减少。值得注意的是,在Si氧化的情况下,在如此低的掺杂密度下,导通类型之间的氧化速率差异很小,这种依赖性是SiC特有的。作者推测这种差异源于氧化过程中载流子(电子/空穴)密度的差异,这可以合理地解释Si和SiC之间氧化速率的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Surface charging effects on current stability of AlGaN/GaN HEMTs Noise performance of an implantable self-reset CMOS image sensor Understanding carrier transport in the ultimate physical scaling limit of MOSFETs Study of current collapse in AlGaN/GaN HEMTs passivated with sputter-deposited SiO2 and SiNx Effects of annealing on GaAs/Si bonding interfaces for hybrid tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1