Statistical techniques for predicting system-level failure using stress-test data

Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao
{"title":"Statistical techniques for predicting system-level failure using stress-test data","authors":"Harry H. Chen, Shih-Hua Kuo, Jonathan Tung, M. Chao","doi":"10.1109/VTS.2015.7116260","DOIUrl":null,"url":null,"abstract":"In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we describe a novel scheme for collecting and analyzing a chip's failure signature. Incorrect outputs of digital chips are forced by applying scan patterns under non-destructive stress conditions. From binary mismatch responses collected in continue-on-fail mode, numeric data features are formed by grouping and counting mismatches in each group, thus defining a chip's “analog” failure signature. We use machine learning to explore prediction models of system-level test (SLT) failures by comparing signatures of chip samples from known SLT pass/fail bins. Important features that clearly separate the SLT pass/fail chips are identified. Experimental results are presented for a 28-nm 1.2-GHz quad-core low-power processor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用压力测试数据预测系统级故障的统计技术
本文提出了一种收集和分析芯片故障信号的新方案。在非破坏性应力条件下应用扫描模式会导致数字芯片输出错误。从以持续故障模式收集的二进制错配响应中,通过对每组错配进行分组和计数,形成数字数据特征,从而定义芯片的“模拟”故障特征。我们使用机器学习来探索系统级测试(SLT)故障的预测模型,通过比较来自已知SLT通过/失败箱的芯片样本的特征。明确区分SLT通过/失败芯片的重要特性。给出了一种28纳米1.2 ghz四核低功耗处理器的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling unauthorized RF transmission below noise floor with no detectable impact on primary communication performance Innovative practices session 7C: Mixed signal test and debug Impact of parameter variations on FinFET faults A call to action: Securing IEEE 1687 and the need for an IEEE test Security Standard An early prediction methodology for aging sensor insertion to assure safe circuit operation due to NBTI aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1