H-BNN: FPGA-based binarized convolutional neural network for cloud detection on satellite payload

Chang-Yuan Lo, Pei-Jun Lee, Trong-An Bui
{"title":"H-BNN: FPGA-based binarized convolutional neural network for cloud detection on satellite payload","authors":"Chang-Yuan Lo, Pei-Jun Lee, Trong-An Bui","doi":"10.1109/ICSSE58758.2023.10227207","DOIUrl":null,"url":null,"abstract":"This paper proposes an FPGA-based binarized convolutional neural network (H-BNN) for cloud detection on a satellite payload. By utilizing 1-bitwise weights and activations, the proposed approach reduces computational complexity and memory requirements, making it an efficient solution for classifying cloud regions in near-infrared images captured by satellite camera sensors. The proposed H-BNN model and hardware implementation approach are more suitable for satellite (a) payload hardware computing and address the challenges posed by traditional Convolution Neural Network models with full precision configuration., and achieved an accuracy of over 90% and 22 Frames Per Second(FPS) on FPGA.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an FPGA-based binarized convolutional neural network (H-BNN) for cloud detection on a satellite payload. By utilizing 1-bitwise weights and activations, the proposed approach reduces computational complexity and memory requirements, making it an efficient solution for classifying cloud regions in near-infrared images captured by satellite camera sensors. The proposed H-BNN model and hardware implementation approach are more suitable for satellite (a) payload hardware computing and address the challenges posed by traditional Convolution Neural Network models with full precision configuration., and achieved an accuracy of over 90% and 22 Frames Per Second(FPS) on FPGA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H-BNN:基于fpga的二值化卷积神经网络在卫星载荷云检测中的应用
提出了一种基于fpga的二值化卷积神经网络(H-BNN)的卫星云检测方法。该方法利用1位加权和激活,降低了计算复杂度和存储需求,是卫星相机传感器捕获的近红外图像中云区域分类的有效解决方案。所提出的H-BNN模型和硬件实现方法更适合卫星(a)载荷硬件计算,解决了传统全精度卷积神经网络模型所面临的挑战。,并在FPGA上实现了90%以上的精度和每秒22帧(FPS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1