Quadrotor Mapless Navigation in Static and Dynamic Environments based on Deep Reinforcement Learning

Tsung-Hsi Tsai, Qing Li
{"title":"Quadrotor Mapless Navigation in Static and Dynamic Environments based on Deep Reinforcement Learning","authors":"Tsung-Hsi Tsai, Qing Li","doi":"10.1109/IAI53119.2021.9619200","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a mapless autonomous navigation planner which plans a collision-free trajectory for quadrotor without any manual operations. Deep Reinforcement Learning (DRL) can optimize the policy by trial and error without knowing the prior information of the environment. The designed reward function has better convergence which compares to the benchmark method. The learned policy makes a real time collision free trajectory which can cope with the dynamic obstacles under different scenarios. The evaluation result shows that the trained model can be applied directly to the unknown environment without retraining the agent.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a mapless autonomous navigation planner which plans a collision-free trajectory for quadrotor without any manual operations. Deep Reinforcement Learning (DRL) can optimize the policy by trial and error without knowing the prior information of the environment. The designed reward function has better convergence which compares to the benchmark method. The learned policy makes a real time collision free trajectory which can cope with the dynamic obstacles under different scenarios. The evaluation result shows that the trained model can be applied directly to the unknown environment without retraining the agent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的静态和动态环境四旋翼无地图导航
在本文中,我们提出了一种无需人工操作的无地图自主导航规划器,用于规划四旋翼飞行器的无碰撞轨迹。深度强化学习(DRL)可以在不知道环境先验信息的情况下通过试错来优化策略。与基准方法相比,所设计的奖励函数具有更好的收敛性。学习到的策略可以在不同场景下生成实时无碰撞轨迹,以应对动态障碍物。评估结果表明,训练后的模型可以直接应用于未知环境,而无需对智能体进行再训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on self-maintenance strategy of CNC machine tools based on case-based reasoning An Improved RRT* Algorithm Combining Motion Constraint and Artificial Potential Field for Robot-Assisted Flexible Needle Insertion in 3D Environment Relative Stability Analysis Method of Systems Based on Goal Seek Operation Optimization of Park Integrated Energy System Considering the Response of Electricity and Cooling Demand Privacy-Preserving Push-sum Average Consensus Algorithm over Directed Graph Via State Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1