{"title":"Development of a Cytomic Force Transducer for Experimental Mechanobiology","authors":"E. Dy, C. Ho","doi":"10.1109/MEMSYS.2009.4805401","DOIUrl":null,"url":null,"abstract":"In this work electrostatic actuation in ionic liquid environments was achieved through a unique atmospheric pressure packaging scheme in conjunction with Trichloro(1H, 1H, 2H, 2H-Perfluorooctyl)Silane surface modification. This technique avoids common problems of electrolysis, charge blocking, and current leakage without the need for any drive signal considerations. When combined with cellular self-assembly onto sacrificial polymers, this breakthrough opens the possibility of creating a cytomic force transduction system through which mechanobiological experiments can be conducted on a multitude of cell phenotypes in vitro. Testing of the device in liquid demonstrated actuation with as little as 15V and continuous operation in liquid was successful for over two weeks.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this work electrostatic actuation in ionic liquid environments was achieved through a unique atmospheric pressure packaging scheme in conjunction with Trichloro(1H, 1H, 2H, 2H-Perfluorooctyl)Silane surface modification. This technique avoids common problems of electrolysis, charge blocking, and current leakage without the need for any drive signal considerations. When combined with cellular self-assembly onto sacrificial polymers, this breakthrough opens the possibility of creating a cytomic force transduction system through which mechanobiological experiments can be conducted on a multitude of cell phenotypes in vitro. Testing of the device in liquid demonstrated actuation with as little as 15V and continuous operation in liquid was successful for over two weeks.