A cluster validity index for fuzzy c-means clustering

Yating Hu, C. Zuo, Yang Yang, Fuheng Qu
{"title":"A cluster validity index for fuzzy c-means clustering","authors":"Yating Hu, C. Zuo, Yang Yang, Fuheng Qu","doi":"10.1109/ICSSEM.2011.6081293","DOIUrl":null,"url":null,"abstract":"This paper presents a new validity index for validation of the fuzzy partitions generated by the fuzzy c-means algorithm. The proposed validity index is based on the compactness and separation measure. The compactness measure is defined as the weighted square deviation of the intra cluster, and the separation measure is defined as the distance for the different fuzzy sets. There are high expectations of a large degree compactness and separation among clusters for a good fuzzy partition. The contrast experimental results with various indices show that the proposed index is more robust to the noise and can identify clusters with different densities and sizes.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a new validity index for validation of the fuzzy partitions generated by the fuzzy c-means algorithm. The proposed validity index is based on the compactness and separation measure. The compactness measure is defined as the weighted square deviation of the intra cluster, and the separation measure is defined as the distance for the different fuzzy sets. There are high expectations of a large degree compactness and separation among clusters for a good fuzzy partition. The contrast experimental results with various indices show that the proposed index is more robust to the noise and can identify clusters with different densities and sizes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊c均值聚类的聚类有效性指标
本文提出了一种新的有效性指标,用于模糊c均值算法生成的模糊分区的有效性验证。提出的有效性指标是基于紧凑性和分离性度量。紧度度量定义为簇内加权方差,分离度量定义为不同模糊集之间的距离。对于一个好的模糊划分,聚类之间有很高的紧密度和分离度。实验结果表明,该指标对噪声具有较强的鲁棒性,能够识别不同密度和大小的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities Scenario simulation of Sino-Singapore Tianjin Eco-city development based on System Dynamics Face recognition based on classifier combinations Computer aided design and manufacture of high precision cam Design of wireless sensor networks for density of natural gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1