Languages’ Impact on Emotional Classification Methods

A. Eilertsen, Dennis Højbjerg Rose, Peter Langballe Erichsen, Rasmus Engesgaard Christensen, Rudra Pratap Deb Nath
{"title":"Languages’ Impact on Emotional Classification Methods","authors":"A. Eilertsen, Dennis Højbjerg Rose, Peter Langballe Erichsen, Rasmus Engesgaard Christensen, Rudra Pratap Deb Nath","doi":"10.15439/2019F143","DOIUrl":null,"url":null,"abstract":"There is currently a lack of research concerning whether Emotional Classification (EC) research on a language is applicable to other languages. If this is the case then we can greatly reduce the amount of research needed for different languages. Therefore, we propose a framework to answer the following null hypothesis: The change in classification accuracy for Emotional Classification caused by changing a single preprocessor or classifier is independent of the target language within a significance level of p= 0.05. We test this hypothesis using an English and a Danish data set, and the classification algorithms: Support-Vector Machine, Naive Bayes, and Random Forest. From our statistical test, we got a p We define this area as cross-languagetalic-value of 0.12852 and could therefore not reject our hypothesis. Thus, our hypothesis could still be true. More research is therefore needed within the field of cross-language EC in order to benefit EC for different languages.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There is currently a lack of research concerning whether Emotional Classification (EC) research on a language is applicable to other languages. If this is the case then we can greatly reduce the amount of research needed for different languages. Therefore, we propose a framework to answer the following null hypothesis: The change in classification accuracy for Emotional Classification caused by changing a single preprocessor or classifier is independent of the target language within a significance level of p= 0.05. We test this hypothesis using an English and a Danish data set, and the classification algorithms: Support-Vector Machine, Naive Bayes, and Random Forest. From our statistical test, we got a p We define this area as cross-languagetalic-value of 0.12852 and could therefore not reject our hypothesis. Thus, our hypothesis could still be true. More research is therefore needed within the field of cross-language EC in order to benefit EC for different languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语言对情绪分类方法的影响
情感分类对一种语言的研究是否适用于其他语言,目前还缺乏相关研究。如果是这样的话,那么我们可以大大减少不同语言所需的研究量。因此,我们提出了一个框架来回答以下零假设:在p= 0.05的显著性水平下,改变单个预处理器或分类器导致的情绪分类的分类精度变化与目标语言无关。我们使用英语和丹麦数据集以及分类算法:支持向量机、朴素贝叶斯和随机森林来检验这一假设。我们将该区域定义为跨语言值0.12852,因此不能拒绝我们的假设。因此,我们的假设仍然是正确的。因此,跨语言电子商务领域需要进行更多的研究,以使不同语言的电子商务受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Support Vector Regression with Reduced Training Data A Deep Learning and Multimodal Ambient Sensing Framework for Human Activity Recognition Predicting Blood Glucose using an LSTM Neural Network License Plate Detection with Machine Learning Without Using Number Recognition Tool-assisted Surrogate Selection for Simulation Models in Energy Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1