{"title":"Reconfigurable delay cell for area-efficient implementation of on-chip MOSFET monitor schemes","authors":"A. Islam, T. Ishihara, H. Onodera","doi":"10.1109/ASSCC.2013.6690998","DOIUrl":null,"url":null,"abstract":"To measure target MOSFET variation, specific monitor schemes are required. With device scaling, developing each monitor scheme is costly. This paper proposes a universal delay monitor cell which enables measurements of various types of variations with single monitor scheme. The monitor cell is reconfigurable and standard cell compatible; thus it can be used in the conventional place and route flow. An area-efficient monitor scheme to monitor global, local, and dynamic variations is developed. Measurement results from a 65-nm test chip shows the validity of the proposed monitor cell. The proposed cell enables area-efficient and low cost implementation of monitor schemes which can be integrated with application such as testing and adaptive voltage scaling.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6690998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
To measure target MOSFET variation, specific monitor schemes are required. With device scaling, developing each monitor scheme is costly. This paper proposes a universal delay monitor cell which enables measurements of various types of variations with single monitor scheme. The monitor cell is reconfigurable and standard cell compatible; thus it can be used in the conventional place and route flow. An area-efficient monitor scheme to monitor global, local, and dynamic variations is developed. Measurement results from a 65-nm test chip shows the validity of the proposed monitor cell. The proposed cell enables area-efficient and low cost implementation of monitor schemes which can be integrated with application such as testing and adaptive voltage scaling.