Faster and more accurate machine learning techniques with less data

T. Kalganova
{"title":"Faster and more accurate machine learning techniques with less data","authors":"T. Kalganova","doi":"10.1109/fmec57183.2022.10062706","DOIUrl":null,"url":null,"abstract":"With the latest development of deep learning techniques and ability to process the data in acceptable timeframe, the need to consider the aspects of environmentally-friendly machine learning techniques has arose. In addition, the latest development of IoT technologies led to the trend where the data are collected and actively used in various machine learning techniques. The lecture will explorer how to reduce the computational requirements of machine learning techniques during training, how to identify the completeness of dataset and ensure that only “useful” data have been used to enhance the training models? How can we design environmentally-friendly machine learning that requires minimum CO2 and respectively computational resources?","PeriodicalId":129184,"journal":{"name":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fmec57183.2022.10062706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the latest development of deep learning techniques and ability to process the data in acceptable timeframe, the need to consider the aspects of environmentally-friendly machine learning techniques has arose. In addition, the latest development of IoT technologies led to the trend where the data are collected and actively used in various machine learning techniques. The lecture will explorer how to reduce the computational requirements of machine learning techniques during training, how to identify the completeness of dataset and ensure that only “useful” data have been used to enhance the training models? How can we design environmentally-friendly machine learning that requires minimum CO2 and respectively computational resources?
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用更少数据的更快、更准确的机器学习技术
随着深度学习技术的最新发展和在可接受的时间范围内处理数据的能力,需要考虑环境友好型机器学习技术的各个方面。此外,物联网技术的最新发展导致了数据被收集并积极用于各种机器学习技术的趋势。讲座将探讨如何在训练过程中减少机器学习技术的计算需求,如何识别数据集的完整性,并确保只使用“有用”的数据来增强训练模型。我们怎样才能设计出对环境友好的机器学习,既需要最少的二氧化碳,又需要最少的计算资源?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Comparison of Big Data Processing Utilizing SciDB and Apache Accumulo Databases Proposal of a Context-aware Task Scheduling Algorithm for the Fog Paradigm Fine-Tuned Access Control for Internet of Things EdgeFNF: Toward Real-time Fake News Detection on Mobile Edge Computing Evaluating Amazon EC2 Spot Price Prediction Models Using Regression Error Characteristic Curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1