S. Ruddell, U. Madawala, D. Thrimawithana, M. Neuburger
{"title":"A novel wireless converter topology for dynamic EV charging","authors":"S. Ruddell, U. Madawala, D. Thrimawithana, M. Neuburger","doi":"10.1109/ITEC.2016.7520264","DOIUrl":null,"url":null,"abstract":"This paper presents a novel topology, based on inductive power transfer (IPT) that is suitable for dynamic charging of electric vehicles (EVs). The proposed topology is novel in that a super capacitor (SC) is used in conjunction with the EV IPT secondary converter to combine power transfer and energy storage in a single converter. In comparison to existing dynamic EV IPT systems, this topology requires no additional switching components, while offering the benefit of a SC energy buffer. Operational modes of the system are described in terms of the switching waveforms required to transfer energy between the grid powered primary IPT pad and the EV. A mathematical model that describes the power transfer within the system is presented along with a simple control strategy to regulate power flow. Simulated and experimental performance of a small scale prototype system in a typical dynamic charging scenario is presented to confirm the validity of the mathematical model and the control strategy.","PeriodicalId":280676,"journal":{"name":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2016.7520264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a novel topology, based on inductive power transfer (IPT) that is suitable for dynamic charging of electric vehicles (EVs). The proposed topology is novel in that a super capacitor (SC) is used in conjunction with the EV IPT secondary converter to combine power transfer and energy storage in a single converter. In comparison to existing dynamic EV IPT systems, this topology requires no additional switching components, while offering the benefit of a SC energy buffer. Operational modes of the system are described in terms of the switching waveforms required to transfer energy between the grid powered primary IPT pad and the EV. A mathematical model that describes the power transfer within the system is presented along with a simple control strategy to regulate power flow. Simulated and experimental performance of a small scale prototype system in a typical dynamic charging scenario is presented to confirm the validity of the mathematical model and the control strategy.