Visualization of Conductive Filament during Write and Erase Cycles on Nanometer-Scale ReRAM Achieved by In-Situ TEM

M. Kudo, M. Arita, Yasuo Takahashi, K. Ohba, Masayuki Shimuta, I. Fujiwara
{"title":"Visualization of Conductive Filament during Write and Erase Cycles on Nanometer-Scale ReRAM Achieved by In-Situ TEM","authors":"M. Kudo, M. Arita, Yasuo Takahashi, K. Ohba, Masayuki Shimuta, I. Fujiwara","doi":"10.1109/IMW.2015.7150312","DOIUrl":null,"url":null,"abstract":"The paper shows clear evidence that in-situ transmission electron microscopy (TEM) can be used as a powerful tool to analyze ReRAM operation. Reproducible resistive switching of 100k cycles in 30- or 70-nm Cu-Te CBRAMs was achieved for the first time during in-situ TEM observation. A TEM sample of the CBRAM cells was processed by a focused ion beam method. The formation and rupture of a Cu filament was observed and analyzed in the TEM with energy dispersive x-ray (EDX) mapping. Since the overshoot current at the resistive switching was efficiently suppressed by a MOSFET placed in the TEM holder, stable and reproducible ReRAM switching operations were achieved in the TEM.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The paper shows clear evidence that in-situ transmission electron microscopy (TEM) can be used as a powerful tool to analyze ReRAM operation. Reproducible resistive switching of 100k cycles in 30- or 70-nm Cu-Te CBRAMs was achieved for the first time during in-situ TEM observation. A TEM sample of the CBRAM cells was processed by a focused ion beam method. The formation and rupture of a Cu filament was observed and analyzed in the TEM with energy dispersive x-ray (EDX) mapping. Since the overshoot current at the resistive switching was efficiently suppressed by a MOSFET placed in the TEM holder, stable and reproducible ReRAM switching operations were achieved in the TEM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用原位透射电镜观察纳米级ReRAM上导电丝的写入和擦除过程
本文表明原位透射电镜(TEM)可以作为分析ReRAM运行的有力工具。在原位TEM观察中,首次实现了30或70 nm Cu-Te cbram中100k循环的可重复性电阻开关。用聚焦离子束法对CBRAM细胞的TEM样品进行处理。用能量色散x射线(EDX)成像技术观察和分析了铜丝的形成和断裂过程。由于电阻开关处的过调电流被放置在TEM支架中的MOSFET有效地抑制,因此在TEM中实现了稳定和可重复的ReRAM开关操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology Trends and Near-Future Applications of Embedded STT-MRAM Junction Optimization for Embedded 40nm FN/FN Flash Memory Thin-Silicon Injector (TSI): An All-Silicon Engineered Barrier, Highly Nonlinear Selector for High Density Resistive RAM Applications Integration and Electrical Evaluation of Epitaxially Grown Si and SiGe Channels for Vertical NAND Memory Applications Critical ReRAM Stack Parameters Controlling Complimentary versus Bipolar Resistive Switching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1