M. Bassi, Giovanni Boi, F. Padovan, J. Fritzin, Stefano Di Martino, Daniel Knauder, A. Bevilacqua
{"title":"A 39-GHz Frequency Tripler With >40-dBc Harmonic Rejection for 5G Communication Systems in 28-nm Bulk CMOS","authors":"M. Bassi, Giovanni Boi, F. Padovan, J. Fritzin, Stefano Di Martino, Daniel Knauder, A. Bevilacqua","doi":"10.1109/ESSCIRC.2019.8902874","DOIUrl":null,"url":null,"abstract":"The generation of the carrier signal with a very low spur level is a key challenge in all the communication systems, especially those operating at mm-waves, where a frequency multiplier is typically used to break the tradeoff between high frequency of operation and low phase noise. This letter describes a frequency tripler tailored to cover the fifth generation new radio 39-GHz frequency range. By embracing the edge-combining concept, together with the combination of a single-stage polyphase filter and a multipoint injection-locked ring oscillator, the proposed frequency multiplier is able to offer robust and consistent high harmonic rejection ratio over a large fractional bandwidth. Fabricated in 28-nm bulk CMOS technology, the measured frequency multiplier features >40-dBc harmonic rejection over an outstanding 35% fractional bandwidth, while consuming 25 mW only from 0.9-V supply. To the best of our knowledge, the proposed multiplier achieves the highest harmonic rejection among the state-of-the-art multipliers in CMOS and BiCMOS technologies, while having 60% smaller area.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of the carrier signal with a very low spur level is a key challenge in all the communication systems, especially those operating at mm-waves, where a frequency multiplier is typically used to break the tradeoff between high frequency of operation and low phase noise. This letter describes a frequency tripler tailored to cover the fifth generation new radio 39-GHz frequency range. By embracing the edge-combining concept, together with the combination of a single-stage polyphase filter and a multipoint injection-locked ring oscillator, the proposed frequency multiplier is able to offer robust and consistent high harmonic rejection ratio over a large fractional bandwidth. Fabricated in 28-nm bulk CMOS technology, the measured frequency multiplier features >40-dBc harmonic rejection over an outstanding 35% fractional bandwidth, while consuming 25 mW only from 0.9-V supply. To the best of our knowledge, the proposed multiplier achieves the highest harmonic rejection among the state-of-the-art multipliers in CMOS and BiCMOS technologies, while having 60% smaller area.