High Performance Accelerator for CNN Applications

A. Kyriakos, V. Kitsakis, Alexandros Louropoulos, E. Papatheofanous, I. Patronas, D. Reisis
{"title":"High Performance Accelerator for CNN Applications","authors":"A. Kyriakos, V. Kitsakis, Alexandros Louropoulos, E. Papatheofanous, I. Patronas, D. Reisis","doi":"10.1109/PATMOS.2019.8862166","DOIUrl":null,"url":null,"abstract":"The continuing advancement of the neural networks based techniques led to their exploitation in many applications, such as computer vision and the natural language processing systems where they provide high accuracy results at the cost of their high computational complexity. Hardware implemented AI accelerators provide the needed performance improvement for applications in specific areas, including robotics, autonomous systems and internet of things. The current study presents an FPGA based accelerator for Convolutional Neural Networks (CNN). The CNN model is trained for the MNIST dataset and the VHDL design targets high throughput, low power while using only on chip memory. The architecture uses parallel computations at the convolutional and fully connected layers and it has a highly pipelined output layer. The architecture implementation on a Xilinx Virtex VC707 validates the results.","PeriodicalId":430458,"journal":{"name":"2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2019.8862166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The continuing advancement of the neural networks based techniques led to their exploitation in many applications, such as computer vision and the natural language processing systems where they provide high accuracy results at the cost of their high computational complexity. Hardware implemented AI accelerators provide the needed performance improvement for applications in specific areas, including robotics, autonomous systems and internet of things. The current study presents an FPGA based accelerator for Convolutional Neural Networks (CNN). The CNN model is trained for the MNIST dataset and the VHDL design targets high throughput, low power while using only on chip memory. The architecture uses parallel computations at the convolutional and fully connected layers and it has a highly pipelined output layer. The architecture implementation on a Xilinx Virtex VC707 validates the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN应用的高性能加速器
基于神经网络的技术的不断进步导致了它们在许多应用中的开发,例如计算机视觉和自然语言处理系统,它们以高计算复杂性为代价提供高精度的结果。硬件实现的人工智能加速器为特定领域的应用提供了所需的性能改进,包括机器人、自主系统和物联网。本研究提出了一种基于FPGA的卷积神经网络(CNN)加速器。CNN模型是针对MNIST数据集进行训练的,VHDL设计的目标是高吞吐量、低功耗,同时只使用芯片内存。该架构在卷积层和全连接层上使用并行计算,并具有高度流水线化的输出层。在Xilinx Virtex VC707上的体系结构实现验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Static CMOS Implementation of Magnitude Comparators [PATMOS 2019 Title Page] UVM-based Verification of a Digital PLL Using SystemVerilog Minimizing Power for Neural Network Training with Logarithm-Approximate Floating-Point Multiplier Stochastic Radial Basis Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1