Anthony Coyette, B. Esen, Ronny Vanhooren, Wim Dobbelaere, G. Gielen
{"title":"Automated testing of mixed-signal integrated circuits by topology modification","authors":"Anthony Coyette, B. Esen, Ronny Vanhooren, Wim Dobbelaere, G. Gielen","doi":"10.1109/VTS.2015.7116275","DOIUrl":null,"url":null,"abstract":"A general method is proposed to automatically generate a DfT solution aiming at the detection of catastrophic faults in analog and mixed-signal integrated circuits. The approach consists in modifying the topology of the circuit by pulling up (down) nodes and then probing differentiating node voltages. The method generates a set of optimal hardware implementations addressing the multi-objective problem such that the fault coverage is maximized and the silicon overhead is minimized. The new method was applied to a real-case industrial circuit, demonstrating a nearly 100 percent coverage at the expense of an area increase of about 5 percent.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"347 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A general method is proposed to automatically generate a DfT solution aiming at the detection of catastrophic faults in analog and mixed-signal integrated circuits. The approach consists in modifying the topology of the circuit by pulling up (down) nodes and then probing differentiating node voltages. The method generates a set of optimal hardware implementations addressing the multi-objective problem such that the fault coverage is maximized and the silicon overhead is minimized. The new method was applied to a real-case industrial circuit, demonstrating a nearly 100 percent coverage at the expense of an area increase of about 5 percent.