Towards Robotic Metal Scrap Cutting: A Novel Workflow and Pipeline for Cutting Path Generation

James Akl, Fadi M. Alladkani, B. Çalli
{"title":"Towards Robotic Metal Scrap Cutting: A Novel Workflow and Pipeline for Cutting Path Generation","authors":"James Akl, Fadi M. Alladkani, B. Çalli","doi":"10.1109/CASE49439.2021.9551645","DOIUrl":null,"url":null,"abstract":"We propose a novel framework for robotic metal scrap cutting in unstructured scrap yards. In this framework the robots and workers collaborate: the worker marks the cutting locations on the scrap metal with spray paint and the robot then generates the cutting trajectories. This leverages worker expertise, while deferring the dull, dirty, dangerous aspects to the robot. For the robot, this requires a 3-D exploration and curve reconstruction stage for path generation. We use a non-uniform rational basis spline (NURBS) model and a topological skeletonization method for path generation, and implement and compare these methods via simulations. These simulations employ a realistic sensor noise model and highly-detailed 3-D scans of complex, real-life scrap pieces. Real-robot experiments with three different shapes are also provided.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel framework for robotic metal scrap cutting in unstructured scrap yards. In this framework the robots and workers collaborate: the worker marks the cutting locations on the scrap metal with spray paint and the robot then generates the cutting trajectories. This leverages worker expertise, while deferring the dull, dirty, dangerous aspects to the robot. For the robot, this requires a 3-D exploration and curve reconstruction stage for path generation. We use a non-uniform rational basis spline (NURBS) model and a topological skeletonization method for path generation, and implement and compare these methods via simulations. These simulations employ a realistic sensor noise model and highly-detailed 3-D scans of complex, real-life scrap pieces. Real-robot experiments with three different shapes are also provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向机器人金属废料切割:一种新的切割路径生成工作流程和流水线
我们提出了一个新的框架机器人金属废料切割在非结构化废料场。在这个框架中,机器人和工人合作:工人用喷漆在废金属上标记切割位置,然后机器人生成切割轨迹。这充分利用了工人的专业知识,同时把枯燥、肮脏、危险的工作交给了机器人。对于机器人来说,这需要一个三维探索和曲线重建阶段来生成路径。我们采用非均匀有理基样条(NURBS)模型和拓扑骨架化方法进行路径生成,并通过仿真实现和比较了这两种方法。这些模拟采用了一个真实的传感器噪声模型和对复杂的、真实的碎片进行高度详细的三维扫描。并给出了三种不同形状的真实机器人实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1