D. Serkland, K. Geib, G. Peake, G. Keeler, Michael Shaw, M. Baker, M. Okandan
{"title":"VCSELs for interferometric readout of MEMS sensors","authors":"D. Serkland, K. Geib, G. Peake, G. Keeler, Michael Shaw, M. Baker, M. Okandan","doi":"10.1117/12.2214522","DOIUrl":null,"url":null,"abstract":"We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2214522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.