Study and implementation of a high step-up voltage DC-DC converter using coupled-inductor and cascode techniques

T. Liang, Yung-Ting Huang, Jian-Hsing Lee, Lo Pang-Yen Ting
{"title":"Study and implementation of a high step-up voltage DC-DC converter using coupled-inductor and cascode techniques","authors":"T. Liang, Yung-Ting Huang, Jian-Hsing Lee, Lo Pang-Yen Ting","doi":"10.1109/APEC.2016.7468128","DOIUrl":null,"url":null,"abstract":"A novel high efficiency high step-up DC-DC converter is proposed in this paper. The proposed converter can achieve high voltage ratio with appropriate duty cycle by using the coupled-inductor and cascode technique. In order to achieve high efficiency, a capacitor is used to recycle the leakage energy of the coupled-inductor and reduce the voltage stress on the switch. Therefore, the low-voltage rating MOSFET with low conduction resistance can be used. The operational principles and steady-state analysis of the proposed converter are discussed in detail. Finally, a prototype circuit with input voltage 24 V, output voltage 200 V and output power 250 W is implemented to verify the performances of the proposed converter. The experimental results reveals that the highest efficiency of the proposed converter is 94.6%, the full load efficiency is 92.3%, and the 10% load efficiency is 93.8%.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A novel high efficiency high step-up DC-DC converter is proposed in this paper. The proposed converter can achieve high voltage ratio with appropriate duty cycle by using the coupled-inductor and cascode technique. In order to achieve high efficiency, a capacitor is used to recycle the leakage energy of the coupled-inductor and reduce the voltage stress on the switch. Therefore, the low-voltage rating MOSFET with low conduction resistance can be used. The operational principles and steady-state analysis of the proposed converter are discussed in detail. Finally, a prototype circuit with input voltage 24 V, output voltage 200 V and output power 250 W is implemented to verify the performances of the proposed converter. The experimental results reveals that the highest efficiency of the proposed converter is 94.6%, the full load efficiency is 92.3%, and the 10% load efficiency is 93.8%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用耦合电感和级联编码技术研究和实现高升压DC-DC变换器
本文提出了一种新型高效高升压DC-DC变换器。该变换器采用电感耦合和级联编码技术,可以在适当的占空比下实现高电压比。为了实现高效率,采用电容回收耦合电感的漏能,减小开关上的电压应力。因此,可以使用具有低导通电阻的低压额定MOSFET。详细讨论了该变换器的工作原理和稳态分析。最后,设计了一个输入电压为24 V、输出电压为200 V、输出功率为250 W的原型电路,验证了该变换器的性能。实验结果表明,该变换器的最高效率为94.6%,满载效率为92.3%,10%负载效率为93.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel model predictive control algorithm to suppress the zero-sequence circulating currents for parallel three-phase voltage source inverters Mode transition control strategy for multiple inverter based distributed generators operating in grid-connected and stand-alone mode Stability analysis and improvement of solid state transformer (SST)-paralleled inverters system using negative impedance feedback control Active common-mode voltage reduction in a fault-tolerant three-phase inverter A sustained increase of input current distortion in active input current shapers to eliminate electrolytic capacitor for designing ac to dc HB-LED drivers for retrofit lamps applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1