Calculating Signal Controllability using Neural Networks: Improvements to Testability Analysis and Test Point Insertion

J. Immanuel, S. Millican
{"title":"Calculating Signal Controllability using Neural Networks: Improvements to Testability Analysis and Test Point Insertion","authors":"J. Immanuel, S. Millican","doi":"10.1109/NATW49237.2020.9153082","DOIUrl":null,"url":null,"abstract":"This article presents an artificial neural network-based signal probability predictor for VLSI circuits which considers reconvergent fan-outs. Current testability analysis techniques are useful for inserting test points to improve circuit testability, but reconvergent fan-outs in digital circuits creates inaccurate testability analysis. Conventional testability analysis methods like COP do not consider reconvergent fan-outs and can degrade algorithm results (e.g., test point insertion), while more advanced methods increase analysis time significantly. This study shows training and using artificial neural networks to predict signal probabilities increases post-test point insertion fault coverage compared to using COP, especially in circuits with many reconvergent fan-outs.","PeriodicalId":147604,"journal":{"name":"2020 IEEE 29th North Atlantic Test Workshop (NATW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th North Atlantic Test Workshop (NATW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NATW49237.2020.9153082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article presents an artificial neural network-based signal probability predictor for VLSI circuits which considers reconvergent fan-outs. Current testability analysis techniques are useful for inserting test points to improve circuit testability, but reconvergent fan-outs in digital circuits creates inaccurate testability analysis. Conventional testability analysis methods like COP do not consider reconvergent fan-outs and can degrade algorithm results (e.g., test point insertion), while more advanced methods increase analysis time significantly. This study shows training and using artificial neural networks to predict signal probabilities increases post-test point insertion fault coverage compared to using COP, especially in circuits with many reconvergent fan-outs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用神经网络计算信号可控性:测试性分析和测试点插入的改进
本文提出了一种考虑再收敛扇出的基于人工神经网络的超大规模集成电路信号概率预测器。当前的可测试性分析技术可以用于插入测试点以提高电路的可测试性,但数字电路中的再收敛扇出会导致不准确的可测试性分析。传统的可测试性分析方法,如COP,没有考虑再收敛扇出,并且会降低算法结果(例如,测试点插入),而更先进的方法会显著增加分析时间。该研究表明,与使用COP相比,训练和使用人工神经网络来预测信号概率增加了测试后插入点故障覆盖率,特别是在具有许多再收敛扇出的电路中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
An Object-Oriented Workflow Metamodel
IF 0 International Conference on Object Oriented Information SystemsPub Date : 1900-01-01 DOI: 10.1007/978-1-4471-0719-4_10
V. Carchiolo, A. Longheu, M. Malgeri
An Access Control Metamodel for Web Service-Oriented Architecture
IF 0 International Conference on Software Engineering Advances (ICSEA 2007)Pub Date : 2007-08-25 DOI: 10.1109/ICSEA.2007.15
Christian Emig, F. Brandt, S. Abeck, J. Biermann, Heiko Klarl
MetamEnTh: An Object-Oriented Metamodel for IoT Systems in Buildings
IF 8.2 1区 计算机科学IEEE Internet of Things JournalPub Date : 2024-03-05 DOI: 10.1109/JIOT.2024.3373330
Peter Yefi;Ramanunni Parakkal Menon;Ursula Eicker;Yann-Gaël Guéhéneuc
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification and Testing Considerations of an In-Memory AI Chip AI Powered THz VLSI Testing Technology [Copyright notice] Characterization of Thermal Runaway in a Ge Photodiode for Si Photonics Self-heating characterization and its applications in technology development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1