Pedestrian Recognition based on Human Semantics and PCA-HOG

E. Yang, Rong Xie
{"title":"Pedestrian Recognition based on Human Semantics and PCA-HOG","authors":"E. Yang, Rong Xie","doi":"10.2991/ICMEIT-19.2019.120","DOIUrl":null,"url":null,"abstract":"In real monitoring scenarios, pedestrian semantics, such as gender and clothing type, is very important for pedestrian retrieval and pedestrian recognition. Traditional pedestrian semantics attribute recognition algorithm adopts manual feature extraction and cannot express the association between pedestrian semantics features. This paper proposes a pedestrian semantics recognition method based on improved AlexNet convolution neural network to obtain pedestrian semantics features. Vector. At the same time, a large number of experiments show that HOG descriptors have a good effect in pedestrian recognition, but the number is too large. In this paper, PCA-HOG descriptors are used to express pedestrians and obtain low-dimensional PCA-HOG eigenvectors. Finally, PCA-HOG feature vectors and pedestrian semantic feature vectors are joined together, and LR model is used to predict pedestrian recognition. Compared with traditional methods, the algorithm is simpler, more practical and has higher recognition accuracy.","PeriodicalId":223458,"journal":{"name":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","volume":"58 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMEIT-19.2019.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In real monitoring scenarios, pedestrian semantics, such as gender and clothing type, is very important for pedestrian retrieval and pedestrian recognition. Traditional pedestrian semantics attribute recognition algorithm adopts manual feature extraction and cannot express the association between pedestrian semantics features. This paper proposes a pedestrian semantics recognition method based on improved AlexNet convolution neural network to obtain pedestrian semantics features. Vector. At the same time, a large number of experiments show that HOG descriptors have a good effect in pedestrian recognition, but the number is too large. In this paper, PCA-HOG descriptors are used to express pedestrians and obtain low-dimensional PCA-HOG eigenvectors. Finally, PCA-HOG feature vectors and pedestrian semantic feature vectors are joined together, and LR model is used to predict pedestrian recognition. Compared with traditional methods, the algorithm is simpler, more practical and has higher recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人类语义和PCA-HOG的行人识别
在真实的监控场景中,行人的性别、服装类型等语义对于行人的检索和识别非常重要。传统的行人语义属性识别算法采用人工特征提取,无法表达行人语义特征之间的关联。提出了一种基于改进的AlexNet卷积神经网络的行人语义识别方法,以获取行人语义特征。向量。同时,大量的实验表明HOG描述符在行人识别中有很好的效果,但是数量太大。本文利用PCA-HOG描述符来表达行人,得到低维PCA-HOG特征向量。最后,将PCA-HOG特征向量与行人语义特征向量结合,利用LR模型进行行人识别预测。与传统方法相比,该算法更简单、实用,具有更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feedback-Based Scheduling for Load-Balanced Crosspoint Buffered Crossbar Switches Research on Traffic Congestion Resolution Mechanism based on Genetic Algorithm and Multi-Agent Decentralized Location Privacy Protection Method of Offset Grid Real-Time Bidding by Proportional Control in Display Advertising Simulation Analysis of Friction and Wear of New TiAl based Alloy Joint Bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1