An Overview: Super-Image Resolution using Generative Adversarial Network for Image Enhancement

Ravindra Singh Kushwaha, Manik Rakhra, Dalwinder Singh, Ashutosh Kumar Singh
{"title":"An Overview: Super-Image Resolution using Generative Adversarial Network for Image Enhancement","authors":"Ravindra Singh Kushwaha, Manik Rakhra, Dalwinder Singh, Ashutosh Kumar Singh","doi":"10.1109/IC3I56241.2022.10072862","DOIUrl":null,"url":null,"abstract":"Image processing plays a vital role during the analysis of the data, whenever the image is taken from the device it is not possible that the quality of the image is poor or found a lot of noise. This paper is working on the GAN’s subpart of SRGAN, which helps in processing of the image to get the HR of the image. By using the SRGAN, we just need to input the image’s low resolution, and after processing the data it will convert into a high-resolution image. Here we are reviewing all the related SRGAN papers.","PeriodicalId":274660,"journal":{"name":"2022 5th International Conference on Contemporary Computing and Informatics (IC3I)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I56241.2022.10072862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image processing plays a vital role during the analysis of the data, whenever the image is taken from the device it is not possible that the quality of the image is poor or found a lot of noise. This paper is working on the GAN’s subpart of SRGAN, which helps in processing of the image to get the HR of the image. By using the SRGAN, we just need to input the image’s low resolution, and after processing the data it will convert into a high-resolution image. Here we are reviewing all the related SRGAN papers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概述:使用生成对抗网络进行图像增强的超图像分辨率
图像处理在数据分析过程中起着至关重要的作用,无论何时从设备上获取图像,都不可能发现图像质量差或发现大量噪声。本文研究的是SRGAN的子部分,它有助于对图像进行处理以获得图像的HR。通过使用SRGAN,我们只需要输入图像的低分辨率,经过数据处理后就会转换成高分辨率图像。在这里,我们回顾了所有相关的SRGAN论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Learning Management System for Evaluating Students’ progress in Learning Environment Detection of Malicious Social Bots with the Aid of Learning Automata on Twitter Review of Psychiatric Disorders in relation with Sleep Disturbances and the proposal of a Prediction System Fully Automated Clustering based Blueprint for Image Analysis A Brief Review of State-of-the-art Routing Methods in Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1