{"title":"Hierarchical modeling and scalable algorithms for in-situ analysis of integrated circuit packages","authors":"Z. Peng, Yang Shao, Shu Wang","doi":"10.1109/EPEPS.2015.7347125","DOIUrl":null,"url":null,"abstract":"The objective of this work is to investigate high-resolution and high-performance computational methods for the first-principles analysis of in-situ product-level integrated circuit (IC) packages. The novelties and key technical approaches of the proposed work include: (i) a scalable geometry-based domain decomposition (DD) method to conquer the geometric complexity of physical domain, which leads to quasi-optimal convergence that is provably scalable for multi-scale objects. Moreover, it results in parallel and scalable computational algorithms to reduce the time complexity via high performance computing facilities; (ii) a hierarchical multi-scale simulator for high-definition IC package systems, in which the technical ingredients include a skeleton-based multi-region multi-solver method and a variational macro-micro analysis for multi-scale modeling. The capability and benefits of the algorithms are explored and illustrated through several real-world 3D IC package applications.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2015.7347125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work is to investigate high-resolution and high-performance computational methods for the first-principles analysis of in-situ product-level integrated circuit (IC) packages. The novelties and key technical approaches of the proposed work include: (i) a scalable geometry-based domain decomposition (DD) method to conquer the geometric complexity of physical domain, which leads to quasi-optimal convergence that is provably scalable for multi-scale objects. Moreover, it results in parallel and scalable computational algorithms to reduce the time complexity via high performance computing facilities; (ii) a hierarchical multi-scale simulator for high-definition IC package systems, in which the technical ingredients include a skeleton-based multi-region multi-solver method and a variational macro-micro analysis for multi-scale modeling. The capability and benefits of the algorithms are explored and illustrated through several real-world 3D IC package applications.