A. Magee, Aichun Feng, K. Karthikeyan, Xiang Liu, D. Yan
{"title":"Experimental and Numerical Study for Gap Resonance of Drillship Moonpool in Waves With/Without Forward Speed","authors":"A. Magee, Aichun Feng, K. Karthikeyan, Xiang Liu, D. Yan","doi":"10.1115/OMAE2018-78561","DOIUrl":null,"url":null,"abstract":"Experimental and numerical studies are carried out to examine the moonpool gap resonance for a drillship at both stationary position and forward speed conditions. The moonpool size and draft are also changed to study their effects for the gap resonance phenomenon. An OpenFOAM based CFD model is developed and the numerical results show good agreement with model tests. Both piston and sloshing modes gap resonances are clearly observed. The study shows that the resonance frequency and RAO of the wave elevation inside the moonpool are subject to the effects of moonpool length, drill ship draft and ship forward speed. The model test shows that moonpool elevation RAO generally significantly increases in head seas and noticeably decreases in following seas condition. It is interesting to notice that the wave flume sidewall significantly depresses the moonpool elevation RAO at a certain frequency regardless of moonpool length and draft. Further study shows that the presence of the flume sidewall results in a trapped mode that coincides with the moonpool piston mode resonance at zero speed. This depresses the peak of the moonpool resonance, which occurs at the same frequency.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Experimental and numerical studies are carried out to examine the moonpool gap resonance for a drillship at both stationary position and forward speed conditions. The moonpool size and draft are also changed to study their effects for the gap resonance phenomenon. An OpenFOAM based CFD model is developed and the numerical results show good agreement with model tests. Both piston and sloshing modes gap resonances are clearly observed. The study shows that the resonance frequency and RAO of the wave elevation inside the moonpool are subject to the effects of moonpool length, drill ship draft and ship forward speed. The model test shows that moonpool elevation RAO generally significantly increases in head seas and noticeably decreases in following seas condition. It is interesting to notice that the wave flume sidewall significantly depresses the moonpool elevation RAO at a certain frequency regardless of moonpool length and draft. Further study shows that the presence of the flume sidewall results in a trapped mode that coincides with the moonpool piston mode resonance at zero speed. This depresses the peak of the moonpool resonance, which occurs at the same frequency.