A Continuous-Time Model of Income Dynamics

T. Heimann, M. Trede
{"title":"A Continuous-Time Model of Income Dynamics","authors":"T. Heimann, M. Trede","doi":"10.25071/1874-6322.22724","DOIUrl":null,"url":null,"abstract":"Most models of income dynamics are set in a discrete-time framework with an arbitrarily chosen accounting period. This article introduces a continuous-time stochastic model of income flows, without the need to define an accounting period. Our model can be estimated using unbalanced panel data with arbitrarily spaced observations. Although our model describes the stochastic properties of income flows, estimation is based on observed incomes accruing during time intervals of possibly varying length. Our model of income dynamics is close in spirit to the discrete-time two-stage models prevalent in the literature. We impose a parsimoniously parameterized continuous-time stochastic process (possibly containing a unit root) to model the deviation from a traditional earnings function. We illustrate our approach by estimating a simplified model using microeconomic data from the German social security agency from 1975 to 1995.","PeriodicalId":142300,"journal":{"name":"Journal of Income Distribution®","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Income Distribution®","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25071/1874-6322.22724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Most models of income dynamics are set in a discrete-time framework with an arbitrarily chosen accounting period. This article introduces a continuous-time stochastic model of income flows, without the need to define an accounting period. Our model can be estimated using unbalanced panel data with arbitrarily spaced observations. Although our model describes the stochastic properties of income flows, estimation is based on observed incomes accruing during time intervals of possibly varying length. Our model of income dynamics is close in spirit to the discrete-time two-stage models prevalent in the literature. We impose a parsimoniously parameterized continuous-time stochastic process (possibly containing a unit root) to model the deviation from a traditional earnings function. We illustrate our approach by estimating a simplified model using microeconomic data from the German social security agency from 1975 to 1995.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
收入动态的连续时间模型
大多数收入动态模型都是在一个任意选择的会计期间的离散时间框架中设置的。本文介绍了收入流的连续时间随机模型,而不需要定义会计期间。我们的模型可以使用任意间隔观测的不平衡面板数据进行估计。虽然我们的模型描述了收入流的随机特性,但估计是基于在可能不同长度的时间间隔内观察到的收入积累。我们的收入动态模型在精神上接近文献中流行的离散时间两阶段模型。我们施加了一个简约参数化的连续时间随机过程(可能包含一个单位根)来模拟与传统收益函数的偏差。我们通过使用1975年至1995年德国社会保障机构的微观经济数据估计一个简化模型来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Axioms and Intuitions about Societal Inequality Does vulnerable employment narrow income inequality? Evidence from developing countries The Impact of Microfinance on Poverty and Income Inequality Return Migration and Earnings Mobility in the Middle East and North Africa The micro-macro gap for capital income in the Eurozone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1