Separate-variable adaptive combination of LMS adaptive filters for plant identification

J. Arenas-García, V. Gómez-Verdejo, M. Martínez‐Ramón, A. Figueiras-Vidal
{"title":"Separate-variable adaptive combination of LMS adaptive filters for plant identification","authors":"J. Arenas-García, V. Gómez-Verdejo, M. Martínez‐Ramón, A. Figueiras-Vidal","doi":"10.1109/NNSP.2003.1318023","DOIUrl":null,"url":null,"abstract":"The Least Mean Square (LMS) algorithm has become a very popular algorithm for adaptive filtering due to its robustness and simplicity. An adaptive convex combination of one fast a one slow LMS filters has been previously proposed for plant identification, as a way to break the speed vs precision compromise inherent to LMS filters. In this paper, an improved version of this combination method is presented. Instead of using a global mixing parameter, the new algorithm uses a different combination parameter for each weight of the adaptive filter, what gives some advantage when identifying varying plants where some of the coefficients remain unaltered, or when the input process is colored. Some simulation examples show the validity of this approach when compared with the one-parameter combination scheme and with a different multi-step approach.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"28 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The Least Mean Square (LMS) algorithm has become a very popular algorithm for adaptive filtering due to its robustness and simplicity. An adaptive convex combination of one fast a one slow LMS filters has been previously proposed for plant identification, as a way to break the speed vs precision compromise inherent to LMS filters. In this paper, an improved version of this combination method is presented. Instead of using a global mixing parameter, the new algorithm uses a different combination parameter for each weight of the adaptive filter, what gives some advantage when identifying varying plants where some of the coefficients remain unaltered, or when the input process is colored. Some simulation examples show the validity of this approach when compared with the one-parameter combination scheme and with a different multi-step approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LMS自适应滤波器在植物识别中的分离变量自适应组合
最小均方算法(LMS)以其鲁棒性和简单性成为一种非常流行的自适应滤波算法。一快一慢LMS滤波器的自适应凸组合已经被提出用于植物识别,作为一种打破LMS滤波器固有的速度与精度折衷的方法。本文提出了这种组合方法的改进版本。新算法没有使用全局混合参数,而是为自适应滤波器的每个权重使用不同的组合参数,这在识别某些系数保持不变的不同植物或输入过程被着色时提供了一些优势。仿真实例表明,该方法与单参数组合方案和不同的多步骤组合方案相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1