Improving the Analysis of Hyperspectral Images Using Tensor Decomposition

Laura-Bianca Bilius, S. Pentiuc
{"title":"Improving the Analysis of Hyperspectral Images Using Tensor Decomposition","authors":"Laura-Bianca Bilius, S. Pentiuc","doi":"10.1109/DAS49615.2020.9108935","DOIUrl":null,"url":null,"abstract":"With the development of remote sensing hyperspectral image analysis techniques become more important. Known methods and algorithms for pattern recognition and clustering together with others built especially for this type of data are trying to be used for dimensional reduction, spectral unmixing, decomposition, segmentation. In this paper, we approached Parafac decomposition due to the lower computation time for obtaining a model that explains very well the real data. Image segmentation techniques are applied to the abundances map to distinguish materials in an area of interest. These techniques are used to obtain a representation that will facilitate the interpretation of the information contained in the hyperspectral image.","PeriodicalId":103267,"journal":{"name":"2020 International Conference on Development and Application Systems (DAS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Development and Application Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS49615.2020.9108935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the development of remote sensing hyperspectral image analysis techniques become more important. Known methods and algorithms for pattern recognition and clustering together with others built especially for this type of data are trying to be used for dimensional reduction, spectral unmixing, decomposition, segmentation. In this paper, we approached Parafac decomposition due to the lower computation time for obtaining a model that explains very well the real data. Image segmentation techniques are applied to the abundances map to distinguish materials in an area of interest. These techniques are used to obtain a representation that will facilitate the interpretation of the information contained in the hyperspectral image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用张量分解改进高光谱图像分析
随着遥感技术的发展,高光谱图像分析技术变得越来越重要。已知的模式识别和聚类方法和算法以及其他专门为这类数据构建的方法和算法正试图用于降维、光谱分解、分解和分割。在本文中,我们接近Parafac分解,因为计算时间较短,可以得到一个很好地解释实际数据的模型。图像分割技术应用于丰度图,以区分感兴趣区域的材料。这些技术用于获得一种表示,这种表示将有助于解释高光谱图像中包含的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning of the PID Controller to the System with Maximum Stability Degree using Genetic Algorithm Omnidirectional Antenna with Complex Conjugate Impedance for Radio Meteor Detection DAS 2020 Index Authors DAS 2020 Cover Page Experimental Results on the Accuracy of the Myo Armband for Short-Range Pointing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1