Support vector machine for the simultaneous approximation of a function and its derivative

M. Lázaro, I. Santamaría, F. Pérez-Cruz, Antonio Artés-Rodríguez
{"title":"Support vector machine for the simultaneous approximation of a function and its derivative","authors":"M. Lázaro, I. Santamaría, F. Pérez-Cruz, Antonio Artés-Rodríguez","doi":"10.1109/NNSP.2003.1318018","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of simultaneously approximating a function and its derivative is formulated within the support vector machine (SVM) framework. The problem has been solved by using the /spl epsiv/-insensitive loss function and introducing new linear constraints in the approximation of the derivative. The resulting quadratic problem can be solved by quadratic programming (QP) techniques. Moreover, a computationally efficient iterative re-weighted least square (IRWLS) procedure has been derived to solve the problem in large data sets. The performance of the method has been compared with the conventional SVM for regression, providing outstanding results.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the problem of simultaneously approximating a function and its derivative is formulated within the support vector machine (SVM) framework. The problem has been solved by using the /spl epsiv/-insensitive loss function and introducing new linear constraints in the approximation of the derivative. The resulting quadratic problem can be solved by quadratic programming (QP) techniques. Moreover, a computationally efficient iterative re-weighted least square (IRWLS) procedure has been derived to solve the problem in large data sets. The performance of the method has been compared with the conventional SVM for regression, providing outstanding results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机同时逼近一个函数和它的导数
本文在支持向量机(SVM)框架下,讨论了函数及其导数的同时逼近问题。采用/spl - epsiv/-不敏感损失函数,并在导数近似中引入新的线性约束,解决了该问题。所得到的二次问题可以用二次规划(QP)技术求解。此外,本文还推导了一种计算效率高的迭代重加权最小二乘(IRWLS)方法来解决大数据集的问题。将该方法的性能与传统的支持向量机进行了比较,取得了显著的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1