Quality-configurable memory hierarchy through approximation: special session

Majid Namaki-Shoushtari, A. Rahmani, N. Dutt
{"title":"Quality-configurable memory hierarchy through approximation: special session","authors":"Majid Namaki-Shoushtari, A. Rahmani, N. Dutt","doi":"10.1145/3125501.3125525","DOIUrl":null,"url":null,"abstract":"The memory subsystem is a major contributor to the overall performance and energy consumption of embedded computing platforms. The emergence of \"killer\" applications such as data-intensive recognition, mining, and synthesis (RMS) applications puts even more stress on the memory subsystem and exacerbates its energy consumption. Traditional mechanisms to ensure data integrity deploy overdesign (e.g., redundancy and error detection/correction) and/or guard-banding that consumes a significant part of the energy consumed in the memory subsystem. We explore opportunities for energy efficiency by exploiting the intrinsic tolerance of a vast class of approximate computing applications to some level of error in the on-chip memory hierarchy. We present two exemplars outlining the typical software and hardware mechanisms that are required for different components in the memory hierarchy, implemented in varying technologies such as SRAM and STT-MRAM.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The memory subsystem is a major contributor to the overall performance and energy consumption of embedded computing platforms. The emergence of "killer" applications such as data-intensive recognition, mining, and synthesis (RMS) applications puts even more stress on the memory subsystem and exacerbates its energy consumption. Traditional mechanisms to ensure data integrity deploy overdesign (e.g., redundancy and error detection/correction) and/or guard-banding that consumes a significant part of the energy consumed in the memory subsystem. We explore opportunities for energy efficiency by exploiting the intrinsic tolerance of a vast class of approximate computing applications to some level of error in the on-chip memory hierarchy. We present two exemplars outlining the typical software and hardware mechanisms that are required for different components in the memory hierarchy, implemented in varying technologies such as SRAM and STT-MRAM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过近似实现质量可配置的内存层次结构:特殊会话
内存子系统是嵌入式计算平台整体性能和能耗的主要贡献者。诸如数据密集型识别、挖掘和合成(RMS)应用程序等“杀手级”应用程序的出现给内存子系统带来了更大的压力,并加剧了其能耗。确保数据完整性的传统机制部署了过度设计(例如,冗余和错误检测/纠正)和/或保护带,这消耗了内存子系统消耗的很大一部分能量。我们通过利用大量近似计算应用程序对片上存储器层次结构中某种程度的错误的内在容忍度来探索能源效率的机会。我们提出了两个示例,概述了存储器层次结构中不同组件所需的典型软件和硬件机制,这些机制在SRAM和STT-MRAM等不同技术中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling reliable main memory using STT-MRAM via restore-aware memory management: work-in-progress Multi-grained performance estimation for MPSoC compilers: work-in-progress Prediction based convolution neural network acceleration: work-in-progress Towards efficient quantized neural network inference on mobile devices: work-in-progress A quantifiable approach to approximate computing: special session
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1