Nonlinear Analysis of an Oscillating Water Column Wave Energy Device in Frequency Domain via Statistical Linearization

L. S. Silva, C. Pesce, H. Morishita, Rodolfo T. Gonçalves
{"title":"Nonlinear Analysis of an Oscillating Water Column Wave Energy Device in Frequency Domain via Statistical Linearization","authors":"L. S. Silva, C. Pesce, H. Morishita, Rodolfo T. Gonçalves","doi":"10.1115/omae2019-96727","DOIUrl":null,"url":null,"abstract":"\n Wave energy converters (WECs) are often subject to large displacements during operating conditions. Hence, nonlinearities present in numerical methods to estimate the performance of WECs must be considered for realistic predictions. These large displacements occur when the device operates on resonant conditions, which results in maximum energy conversion. The system dynamics are usually simulated via time domain models in order to being able to capture nonlinearities. However, a high computational cost is associated with those simulations. Alternatively, the present work treats the nonlinearities in the frequency domain via Statistical Linearization (SL). The SL results are compared to the Power Spectrum Density (PSD) of time domain simulations to verify the reliability of the proposed method. In this regard, the work initiates with the derivation of the governing equations of the air-chamber and the Oscillating Water Column (OWC). Then, the SL technique is presented and applied. The SL results show a satisfactory agreement for the system dynamics, mean surface elevation, mean pressure, and mean power compared to time domain simulations. Also, the SL technique produces a rapid estimation of the response, which is an effective approach for the evaluation of numerous environmental conditions and design, and further optimization procedures.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wave energy converters (WECs) are often subject to large displacements during operating conditions. Hence, nonlinearities present in numerical methods to estimate the performance of WECs must be considered for realistic predictions. These large displacements occur when the device operates on resonant conditions, which results in maximum energy conversion. The system dynamics are usually simulated via time domain models in order to being able to capture nonlinearities. However, a high computational cost is associated with those simulations. Alternatively, the present work treats the nonlinearities in the frequency domain via Statistical Linearization (SL). The SL results are compared to the Power Spectrum Density (PSD) of time domain simulations to verify the reliability of the proposed method. In this regard, the work initiates with the derivation of the governing equations of the air-chamber and the Oscillating Water Column (OWC). Then, the SL technique is presented and applied. The SL results show a satisfactory agreement for the system dynamics, mean surface elevation, mean pressure, and mean power compared to time domain simulations. Also, the SL technique produces a rapid estimation of the response, which is an effective approach for the evaluation of numerous environmental conditions and design, and further optimization procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计线性化的振荡水柱波能装置频域非线性分析
波浪能转换器(WECs)在工作条件下经常受到较大的位移。因此,为了进行现实的预测,必须考虑数值方法中存在的非线性。当器件在谐振条件下工作时,这些大位移就会发生,从而产生最大的能量转换。系统动力学通常通过时域模型来模拟,以便能够捕捉非线性。然而,与这些模拟相关的计算成本很高。另外,本工作通过统计线性化(SL)处理频域的非线性。仿真结果与时域仿真的功率谱密度(PSD)进行了比较,验证了所提方法的可靠性。在这方面,工作从推导气室和振荡水柱(OWC)的控制方程开始。然后,介绍了SL技术并进行了应用。与时域模拟结果相比,模拟结果在系统动力学、平均地表高程、平均压力和平均功率方面具有令人满意的一致性。此外,SL技术可以快速估计响应,这是评估众多环境条件和设计以及进一步优化程序的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Domain Diffraction Modelling With Mean Force Effects and Experimental Comparison for Slack-Moored M4 Wave Energy Converter Hydroelastic Analysis and Validation of an End-Anchored Floating Bridge Under Wave and Current Loads Nonlinear Analysis of a Heaving Point Absorber in Frequency Domain via Statistical Linearization Evaluation of Flow Field in the Layouts of Cross-Shaped Artificial Reefs Experimental Study of the Effect of the Pontoon Presence on the Flow-Induced Motion of a Semi-Submersible Platform With Four Square Columns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1