Equipment Sensor Data Cleansing Algorithm Design for ML-Based Anomaly Detection

Yun-Che Hsieh, Chieh-Yu Chen, Da-Yin Liao, Peter B. Luh, Shi-Chung Chang
{"title":"Equipment Sensor Data Cleansing Algorithm Design for ML-Based Anomaly Detection","authors":"Yun-Che Hsieh, Chieh-Yu Chen, Da-Yin Liao, Peter B. Luh, Shi-Chung Chang","doi":"10.1109/ISSM55802.2022.10027125","DOIUrl":null,"url":null,"abstract":"Anomaly detection (AD) by exploiting machine learning (ML) of equipment sensory data can make significant contributions to yield improvements. Data cleansing is critical to provide ML-based AD with fixed-length input without distortion of data characteristics. We present a novel data cleansing design. Design innovations are: process step and mode-based input data length determination, importance indicator of sample data based on relative difference, and data cleansing priority by exploiting importance indicator and entropy. Experiment results demonstrate our cleansing design is superior to two frequently used methods in preserving data characteristics for effective AD by using an unsupervised ML approach.","PeriodicalId":130513,"journal":{"name":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM55802.2022.10027125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Anomaly detection (AD) by exploiting machine learning (ML) of equipment sensory data can make significant contributions to yield improvements. Data cleansing is critical to provide ML-based AD with fixed-length input without distortion of data characteristics. We present a novel data cleansing design. Design innovations are: process step and mode-based input data length determination, importance indicator of sample data based on relative difference, and data cleansing priority by exploiting importance indicator and entropy. Experiment results demonstrate our cleansing design is superior to two frequently used methods in preserving data characteristics for effective AD by using an unsupervised ML approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的异常检测设备传感器数据清洗算法设计
利用设备感官数据的机器学习(ML)进行异常检测(AD)可以为产量的提高做出重大贡献。数据清理是为基于ml的AD提供固定长度输入而不失真数据特征的关键。我们提出了一种新的数据清理设计。设计创新包括:基于流程步骤和模式的输入数据长度确定,基于相对差的样本数据重要性指标,以及利用重要性指标和熵的数据清理优先级。实验结果表明,我们的清洗设计优于使用无监督ML方法的两种常用方法,可以有效地保留AD的数据特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Status of EUV Lithography, What is the Stochastic Issues? Hydrogen diffusion behavior in CH4N-molecularion-implanted wafers for three-dimensional stacked CMOS image sensors Maintenance Content Reduction and Digitalization for Performance Optimization Self-tuning Optimization to Compatible the Delivery and Low Energy Consumption Experimentally Study on the Effect of RIE Etching Power on Etching Rate of $\beta-\text{Ga}_{2}\mathrm{O}_{3}$ Thin Film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1