Auto-generating Virtual Human Behavior by Understanding User Contexts

Hanseob Kim, Ghazanfar Ali, Seungwon Kim, G. Kim, Jae-In Hwang
{"title":"Auto-generating Virtual Human Behavior by Understanding User Contexts","authors":"Hanseob Kim, Ghazanfar Ali, Seungwon Kim, G. Kim, Jae-In Hwang","doi":"10.1109/VRW52623.2021.00178","DOIUrl":null,"url":null,"abstract":"Virtual humans are most natural and effective when it can act out and animate verbal/gestural actions. One popular method to realize this is to infer the actions from predefined phrases. This research aims to provide a more flexible method to activate various behaviors straight from natural conversations. Our approach uses BERT as the backbone for natural language understanding and, on top of it, a jointly learned sentence classifier (SC) and entity classifier (EC). The SC classifies the input into conversation or action, and EC extracts the entities for the action. The pilot study has shown promising results with high perceived naturalness and positive experiences.","PeriodicalId":256204,"journal":{"name":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW52623.2021.00178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Virtual humans are most natural and effective when it can act out and animate verbal/gestural actions. One popular method to realize this is to infer the actions from predefined phrases. This research aims to provide a more flexible method to activate various behaviors straight from natural conversations. Our approach uses BERT as the backbone for natural language understanding and, on top of it, a jointly learned sentence classifier (SC) and entity classifier (EC). The SC classifies the input into conversation or action, and EC extracts the entities for the action. The pilot study has shown promising results with high perceived naturalness and positive experiences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过理解用户上下文自动生成虚拟人类行为
当虚拟人可以表演语言/手势动作时,它是最自然和有效的。实现这一点的一种流行方法是从预定义的短语中推断动作。这项研究旨在提供一种更灵活的方法,直接从自然对话中激活各种行为。我们的方法使用BERT作为自然语言理解的主干,并在其基础上使用联合学习的句子分类器(SC)和实体分类器(EC)。SC将输入分类为对话或操作,EC为操作提取实体。试点研究显示了高感知自然度和积极体验的有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[DC] Emotion Regulation via Eye Gaze Play with Emotional Characters: Improving User Emotional Experience by A Data-driven Approach in VR Volleyball Games Depression Prevention by Mutual Empathy Training: Using Virtual Reality as a Tool [DC] SharpView AR: Enhanced Visual Acuity for Out-of-Focus Virtual Content Remote adversarial VR serious game simulating COVID-19 infection spread and protection protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1