Performance and Reliability of Asymmetrical Underlapped FinFET based 6T and 8T SRAMs in Sub-10nm Domain

M. Mohammed, Athiya Nizam, M. Chowdhury
{"title":"Performance and Reliability of Asymmetrical Underlapped FinFET based 6T and 8T SRAMs in Sub-10nm Domain","authors":"M. Mohammed, Athiya Nizam, M. Chowdhury","doi":"10.1109/NANOTECH.2018.8653566","DOIUrl":null,"url":null,"abstract":"In this paper, the performance and reliability of optimized 6T and 8T SRAM circuits using high ION/IOFF ratio Asymmetrical Underlapped FinFETs are determined at a reduced supply voltage of 500mV. Performance of both SRAM designs are evaluated during read and write operations. 6T SRAM achieves 44.97% improvement in the read energy compared to 8T SRAM. However, 6T SRAM write energy degraded by 3.16% compared to 8T SRAM. Read stability and write ability of SRAM cells are determined using Static Noise Margin and N-curve methods. Moreover, Monte Carlo simulations are performed on the SRAM cells to evaluate process variations. Simulations were done in HSPICE using 7nm Asymmetrical Underlap FinFET technology.","PeriodicalId":292669,"journal":{"name":"2018 IEEE Nanotechnology Symposium (ANTS)","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Nanotechnology Symposium (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOTECH.2018.8653566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the performance and reliability of optimized 6T and 8T SRAM circuits using high ION/IOFF ratio Asymmetrical Underlapped FinFETs are determined at a reduced supply voltage of 500mV. Performance of both SRAM designs are evaluated during read and write operations. 6T SRAM achieves 44.97% improvement in the read energy compared to 8T SRAM. However, 6T SRAM write energy degraded by 3.16% compared to 8T SRAM. Read stability and write ability of SRAM cells are determined using Static Noise Margin and N-curve methods. Moreover, Monte Carlo simulations are performed on the SRAM cells to evaluate process variations. Simulations were done in HSPICE using 7nm Asymmetrical Underlap FinFET technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚10nm域基于6T和8T非对称迭层FinFET sram的性能和可靠性
本文在降低电源电压500mV的情况下,测试了采用高离子/IOFF比的非对称欠叠finfet优化的6T和8T SRAM电路的性能和可靠性。两种SRAM设计的性能在读写操作期间进行评估。与8T SRAM相比,6T SRAM的读能量提高了44.97%。然而,与8T SRAM相比,6T SRAM的写能量下降了3.16%。采用静态噪声裕度法和n曲线法确定SRAM单元的读稳定性和写能力。此外,还对SRAM单元进行了蒙特卡罗模拟,以评估工艺变化。采用7nm非对称Underlap FinFET技术在HSPICE中进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma treatment effect on gate stack electrical properties Double-Gate FDSOI Based SRAM Bitcell Circuit Designs with Different Back-Gate Biasing Configurations Metal Oxide Semiconductor-based gas sensor for Acetone sensing Investigation of plasmonic based nanocomposite thin films for high temperature gas sensing Memory Technology enabling the next Artificial Intelligence revolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1