A Multimodal Dataset for Gait Recognition in Different Terrains using Wearable Sensors

Mengxue Yan, Yan Zhao, Ming Guo, Haoyu Sun, Jianlong Qiu, Feng Zhao
{"title":"A Multimodal Dataset for Gait Recognition in Different Terrains using Wearable Sensors","authors":"Mengxue Yan, Yan Zhao, Ming Guo, Haoyu Sun, Jianlong Qiu, Feng Zhao","doi":"10.1109/ICIST55546.2022.9926866","DOIUrl":null,"url":null,"abstract":"Gait has been shown to be a profound movement in human activities, and gait recognition is a commonly used biometric recognition in recent years. Gait recognition based on wearable sensors has been involved in various application areas. Especially in the area of medical, gait research is an essential issue. The purpose of this paper is to provide a multimodal public dataset for use with gait recognition. The dataset is derived of data from wearable inertial sensors and ECG sensor. Both sensors provide easy-to-operate and low-cost data recording for gait recognition. The gait dataset is based on the data from 15 healthy adults whose lower limbs have neither been injured nor operated on in the past year. Unlike other well-known datasets in the literature, this dataset contains inertial data (built-in gyroscope, accelerometer, geomagnetic field sensor) recorded from the ankle, as well as ECG data from a cardiac sensor. In this paper, the 15 volunteers were asked to walk at their most comfortable pace in four different terrains and complete the test. These four kinds of terrains are: flat land, sand, grassland and blind road. In addition, in order to verify the effectiveness of this multimodal dataset, this paper uses deep learning to identify the gait patterns of four terrains, and the recognition rate reaches 82%.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gait has been shown to be a profound movement in human activities, and gait recognition is a commonly used biometric recognition in recent years. Gait recognition based on wearable sensors has been involved in various application areas. Especially in the area of medical, gait research is an essential issue. The purpose of this paper is to provide a multimodal public dataset for use with gait recognition. The dataset is derived of data from wearable inertial sensors and ECG sensor. Both sensors provide easy-to-operate and low-cost data recording for gait recognition. The gait dataset is based on the data from 15 healthy adults whose lower limbs have neither been injured nor operated on in the past year. Unlike other well-known datasets in the literature, this dataset contains inertial data (built-in gyroscope, accelerometer, geomagnetic field sensor) recorded from the ankle, as well as ECG data from a cardiac sensor. In this paper, the 15 volunteers were asked to walk at their most comfortable pace in four different terrains and complete the test. These four kinds of terrains are: flat land, sand, grassland and blind road. In addition, in order to verify the effectiveness of this multimodal dataset, this paper uses deep learning to identify the gait patterns of four terrains, and the recognition rate reaches 82%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可穿戴传感器的不同地形步态识别多模态数据集
步态已被证明是人类活动中一种深刻的运动,步态识别是近年来常用的生物特征识别方法。基于可穿戴传感器的步态识别已经涉及到各个应用领域。特别是在医学领域,步态研究是一个必不可少的问题。本文的目的是提供一个用于步态识别的多模态公共数据集。该数据集来源于可穿戴式惯性传感器和心电传感器的数据。这两种传感器都为步态识别提供了易于操作和低成本的数据记录。步态数据集基于15名健康成年人的数据,这些成年人的下肢在过去一年中既没有受伤也没有动过手术。与文献中其他知名数据集不同,该数据集包含从脚踝记录的惯性数据(内置陀螺仪,加速度计,地磁场传感器)以及来自心脏传感器的ECG数据。在这篇论文中,15名志愿者被要求以他们最舒适的速度在四个不同的地形中行走并完成测试。这四种地形分别是:平地、沙地、草原和盲道。此外,为了验证该多模态数据集的有效性,本文利用深度学习对四种地形的步态模式进行了识别,识别率达到82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Marine Aquaculture Information Extraction from Optical Remote Sensing Images via MDOAU2-net A hybrid intelligent system for assisting low-vision people with over-the-counter medication Practical Adaptive Event-triggered Finite-time Stabilization for A Class of Second-order Systems Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction A novel energy carbon emission codes based carbon efficiency evaluation method for enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1