Gauss-Newton image registration with CUDA

Manal Jalloul, M. Baydoun, M. A. Al-Alaoui
{"title":"Gauss-Newton image registration with CUDA","authors":"Manal Jalloul, M. Baydoun, M. A. Al-Alaoui","doi":"10.1109/ICECS.2011.6122274","DOIUrl":null,"url":null,"abstract":"Image registration is the process of matching different images whether 2D or 3D of certain similar or common properties for different purposes. This work addresses this field using a Gauss-Newton optimization approach. The problem is basically formulated as minimizing a cost function that is then solved by a backtracking line search. Since this is considered as a demanding problem especially for larger data, this paper presents the solution using the CUDA GPU architecture provided by Nvidia [1] in order to achieve better performance and reduce timing through parallelism.","PeriodicalId":251525,"journal":{"name":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2011.6122274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Image registration is the process of matching different images whether 2D or 3D of certain similar or common properties for different purposes. This work addresses this field using a Gauss-Newton optimization approach. The problem is basically formulated as minimizing a cost function that is then solved by a backtracking line search. Since this is considered as a demanding problem especially for larger data, this paper presents the solution using the CUDA GPU architecture provided by Nvidia [1] in order to achieve better performance and reduce timing through parallelism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CUDA的高斯-牛顿图像配准
图像配准是将具有某些相似或共同属性的二维或三维图像用于不同目的的匹配过程。这项工作使用高斯-牛顿优化方法解决了这个领域。这个问题基本上被表述为最小化成本函数,然后通过回溯线搜索来解决。由于这被认为是一个要求很高的问题,特别是对于更大的数据,本文提出了使用Nvidia提供的CUDA GPU架构的解决方案[1],以便通过并行性获得更好的性能并减少时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Controlling the bandwidth of Bulk Acoustic Wave filter using a decoder designed on 65nm process High level characterization and optimization of a GPSK modulator with genetic algorithm Asymmetric large size multiplication using embedded blocks with efficient compression technique in FPGAs Circuit authentication based on Ring-Oscillator PUFs High performance 4:1 multiplexer with ambipolar double-gate FETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1