A Proprioceptive Haptic Device Design for Teaching Bimanual Manipulation

Choong-Keun Lee, Taeyoon Lee, Jae-Kyung Min, Albert Wang, SungPyo Lee, Jaesung Oh, Chang-Woo Park, Keunjun Choi
{"title":"A Proprioceptive Haptic Device Design for Teaching Bimanual Manipulation","authors":"Choong-Keun Lee, Taeyoon Lee, Jae-Kyung Min, Albert Wang, SungPyo Lee, Jaesung Oh, Chang-Woo Park, Keunjun Choi","doi":"10.1109/icra46639.2022.9811694","DOIUrl":null,"url":null,"abstract":"Manipulation involves a broad spectrum of skills, e.g., polishing, peeling, flipping, screwing, etc., requiring complex and delicate control over both force and position. This paper aims at designing an optimal haptic interface for providing a robot with direct demonstrations of human's innate intelligence in performing a wide range of force-based bimanual manipulation tasks. Based on the proprioceptive actuation mechanism, kinodynamic design parameters of the (dual) 7-DOF haptic arm are optimized so as to maximize the force transparency perceived by the operator over the full real-scale workspace of human arm while also ensuring other important constraints including robot-to-operator collision and singularity avoidance, payload, controlled stiffness, etc. 2.65 kg of average reflective mass and 1500 N/m of controlled stiffness is achieved over the entire workspace. We show the efficacy of our haptic interface by demonstrating various force-based manipulation tasks with a light-weight anthropomorphic bimanual manipulator, LIMS2-AMBIDEX [1].","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulation involves a broad spectrum of skills, e.g., polishing, peeling, flipping, screwing, etc., requiring complex and delicate control over both force and position. This paper aims at designing an optimal haptic interface for providing a robot with direct demonstrations of human's innate intelligence in performing a wide range of force-based bimanual manipulation tasks. Based on the proprioceptive actuation mechanism, kinodynamic design parameters of the (dual) 7-DOF haptic arm are optimized so as to maximize the force transparency perceived by the operator over the full real-scale workspace of human arm while also ensuring other important constraints including robot-to-operator collision and singularity avoidance, payload, controlled stiffness, etc. 2.65 kg of average reflective mass and 1500 N/m of controlled stiffness is achieved over the entire workspace. We show the efficacy of our haptic interface by demonstrating various force-based manipulation tasks with a light-weight anthropomorphic bimanual manipulator, LIMS2-AMBIDEX [1].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于双手操作教学的本体感觉触觉装置设计
操作涉及广泛的技能,例如,抛光,剥离,翻转,旋转等,需要对力和位置进行复杂而精细的控制。本文旨在设计一种最优的触觉界面,使机器人在执行各种基于力的手动操作任务时能够直接展示人类的先天智能。基于本体感觉驱动机制,优化了(双)七自由度触觉臂的动力学设计参数,使操作者在整个实际工作空间内感知到的力透明度最大化,同时保证了机器人与操作者碰撞和避免奇异、有效载荷、控制刚度等其他重要约束条件。在整个工作空间内实现了2.65 kg的平均反射质量和1500 N/m的控制刚度。我们通过使用轻量级拟人化双手机械手LIMS2-AMBIDEX演示各种基于力的操作任务来展示触觉界面的功效[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1