M. Hofstätter, M. Litzenberger, D. Matolin, C. Posch
{"title":"Hardware-accelerated address-event processing for high-speed visual object recognition","authors":"M. Hofstätter, M. Litzenberger, D. Matolin, C. Posch","doi":"10.1109/ICECS.2011.6122221","DOIUrl":null,"url":null,"abstract":"This paper presents a hardware implementation for high-speed, event-based data processing. A full-custom Address-Event (AER) processing system (GAEP) features a 10ns-resolution 33M/5.125M events·s−1 peak/sustained event rate sensor data interface for precision time-stamping of asynchronous sensor data and implements hardware-accelerated event pre-processing including rate dependent IRQ generation and address masking for ROI/RONI. The pre-processing functions are implemented in dedicated hardware and operate without loading the actual processor device, a SPARC-compatible general-purpose micro-processor. The complete SoC is implemented in 0.18μm standard CMOS technology. We present a camera system comprising the AER processor and a bio-inspired dynamic vision sensor in an exemplary high-speed vision application related to shape detection / object recognition. Relevant details of the system architecture and performance results characterizing the vision system in a real-world machine vision application are presented.","PeriodicalId":251525,"journal":{"name":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th IEEE International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2011.6122221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a hardware implementation for high-speed, event-based data processing. A full-custom Address-Event (AER) processing system (GAEP) features a 10ns-resolution 33M/5.125M events·s−1 peak/sustained event rate sensor data interface for precision time-stamping of asynchronous sensor data and implements hardware-accelerated event pre-processing including rate dependent IRQ generation and address masking for ROI/RONI. The pre-processing functions are implemented in dedicated hardware and operate without loading the actual processor device, a SPARC-compatible general-purpose micro-processor. The complete SoC is implemented in 0.18μm standard CMOS technology. We present a camera system comprising the AER processor and a bio-inspired dynamic vision sensor in an exemplary high-speed vision application related to shape detection / object recognition. Relevant details of the system architecture and performance results characterizing the vision system in a real-world machine vision application are presented.