Robotic motion planning with obstacle avoidance based on hierarchical deep reinforcement learning

Guoquan Zhao, Fen Ying, Zuowei Pang, Huashan Liu
{"title":"Robotic motion planning with obstacle avoidance based on hierarchical deep reinforcement learning","authors":"Guoquan Zhao, Fen Ying, Zuowei Pang, Huashan Liu","doi":"10.1145/3598151.3598170","DOIUrl":null,"url":null,"abstract":"When the task environment becomes complex, deep reinforcement learning (DRL) is easy to encounter the problems of gradient disappearance or explosion. To solve this problem, this paper proposes a hierarchical DRL framework consisting of task and action layers. The task layer learns interpretable representations of tasks and decision processes, and drives the action layer. The action layer learns to collaboratively accomplish complex tasks in different roles. The DRL algorithm based on this framework is tested on a redundant degree of freedom robot in obstacle avoidance motion planning tasks, and comparative experimental results prove the effectiveness and feasibility of the proposed method.","PeriodicalId":398644,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3598151.3598170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When the task environment becomes complex, deep reinforcement learning (DRL) is easy to encounter the problems of gradient disappearance or explosion. To solve this problem, this paper proposes a hierarchical DRL framework consisting of task and action layers. The task layer learns interpretable representations of tasks and decision processes, and drives the action layer. The action layer learns to collaboratively accomplish complex tasks in different roles. The DRL algorithm based on this framework is tested on a redundant degree of freedom robot in obstacle avoidance motion planning tasks, and comparative experimental results prove the effectiveness and feasibility of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次深度强化学习的机器人避障运动规划
当任务环境变得复杂时,深度强化学习(deep reinforcement learning, DRL)容易遇到梯度消失或爆炸的问题。为了解决这一问题,本文提出了一种由任务层和动作层组成的分层DRL框架。任务层学习任务和决策过程的可解释表示,并驱动操作层。动作层学习以不同的角色协作完成复杂的任务。基于该框架的DRL算法在一个冗余自由度机器人避障运动规划任务上进行了测试,对比实验结果证明了所提方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Like Motion Planning of Anthropomorphic Arms Based on Hierarchical Strategy Cross-media control and parameter tuning for water-air amphibious multi-rotor vehicle A Constraints-based Dynamic Time Warping Method for Gesture Recognition with Kinect Feature Tracking Control of Input-constrained VS Manipulators through ADP Swing-up and Balance Control of Rotary Double Inverted Pendulum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1