Surface Acoustic Wave-Driven Active Plasmonicsbased on Dynamic Patterning of Nanoparticles in Microfluidic Channels

Jinjie Shi, Yuebing Zheng, T. Huang
{"title":"Surface Acoustic Wave-Driven Active Plasmonicsbased on Dynamic Patterning of Nanoparticles in Microfluidic Channels","authors":"Jinjie Shi, Yuebing Zheng, T. Huang","doi":"10.1109/MEMSYS.2009.4805386","DOIUrl":null,"url":null,"abstract":"The nanoparticles redistribution in a microfluidic channel through a dynamic patterning process will locally change the refractive index of the medium around the nanodisk arrays, as well as the LSPR. The dynamic patterning of nanoparticles was achieved by a standing surface acoustic wave (SSAW), from which the acoustic force generated and force the particles to the pressure nodes. The SSAW were formed through two parallel interdigital transducers (IDTs) on a LiNbO3 substrate, on which the gold nanodisk arrays were fabricated through a nanosphere lithography. A PDMS microchannel was aligned with the IDTs and bonded with the substrate to cover the nanodisk arrays. A solution of fluorescent polystyrene beads (diameter: 320 nm) was injected into the channel through a pressure driven flow. When SSAW was on, the original peak (¿=694 nm) is split into two peaks at ¿1= 662 nm and ¿2= 746 nm, respectively.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The nanoparticles redistribution in a microfluidic channel through a dynamic patterning process will locally change the refractive index of the medium around the nanodisk arrays, as well as the LSPR. The dynamic patterning of nanoparticles was achieved by a standing surface acoustic wave (SSAW), from which the acoustic force generated and force the particles to the pressure nodes. The SSAW were formed through two parallel interdigital transducers (IDTs) on a LiNbO3 substrate, on which the gold nanodisk arrays were fabricated through a nanosphere lithography. A PDMS microchannel was aligned with the IDTs and bonded with the substrate to cover the nanodisk arrays. A solution of fluorescent polystyrene beads (diameter: 320 nm) was injected into the channel through a pressure driven flow. When SSAW was on, the original peak (¿=694 nm) is split into two peaks at ¿1= 662 nm and ¿2= 746 nm, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于微流控通道中纳米颗粒动态图像化的表面声波驱动主动等离子体
纳米颗粒通过动态图像化过程在微流控通道中重新分布,将局部改变纳米磁盘阵列周围介质的折射率,以及LSPR。纳米颗粒的动态图案是通过驻表面声波(SSAW)来实现的,声波产生声力并迫使颗粒到达压力节点。在LiNbO3衬底上通过两个平行的数字间换能器(idt)形成SSAW,并通过纳米球光刻技术在其上制备金纳米盘阵列。PDMS微通道与idt对齐,并与衬底结合以覆盖纳米磁盘阵列。将聚苯乙烯荧光珠(直径320 nm)溶液通过压力驱动流注入通道。当SSAW开启时,原始峰(¿=694 nm)分别在¿1= 662 nm和¿2= 746 nm处分裂为两个峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Characterization of Microliter Amounts of Liquids by a Micromachined Calorimetric Transducer Direct Etching of High Aspect Ratio Structures Through a Stencil Electrical Discharge based Microfabrication on Electrospun Nanofibers Supercritical Fluid Deposition (SCFD) Technique as a Novel Tool for MEMS Fabrication Novel Concept of Microwave MEMS Reconfigurable 7X45° Multi-Stage Dielectric-Block Phase Shifter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1