{"title":"Design of a broadband metamaterial absorber for visible solar radiation entrapment","authors":"Sydur Rahman, M. A. Islam, M. S. Alam","doi":"10.1109/ICTP53732.2021.9744206","DOIUrl":null,"url":null,"abstract":"A metamaterial-based ultrathin absorber is proposed in this work using three layers of materials (Tungsten-Silica-Tungsten) for visible solar radiation absorption in which near-unity broadband absorbance is observed in a wavelength span of 380–765nm. The absorber is analyzed by the Finite Integration Technique. The average absorption is 96.86% in this visible domain and the peak is 99.96% at 497.65nm. The structure is investigated for various oblique incident angles and mechanical deformation for utilizing it in a complex solar energy harvester environment. It is found that the structure is wide-angle stable (up to 70°) and mechanically bendable without dropping a significant level of absorption.","PeriodicalId":328336,"journal":{"name":"2021 IEEE International Conference on Telecommunications and Photonics (ICTP)","volume":"10 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Telecommunications and Photonics (ICTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTP53732.2021.9744206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A metamaterial-based ultrathin absorber is proposed in this work using three layers of materials (Tungsten-Silica-Tungsten) for visible solar radiation absorption in which near-unity broadband absorbance is observed in a wavelength span of 380–765nm. The absorber is analyzed by the Finite Integration Technique. The average absorption is 96.86% in this visible domain and the peak is 99.96% at 497.65nm. The structure is investigated for various oblique incident angles and mechanical deformation for utilizing it in a complex solar energy harvester environment. It is found that the structure is wide-angle stable (up to 70°) and mechanically bendable without dropping a significant level of absorption.