{"title":"A Real-time Affordance-based Object Pose Estimation Approach for Robotic Grasp Pose Estimation","authors":"Shang-Wen Wong, Yu-Chen Chiu, Chi-Yi Tsai","doi":"10.1109/ICSSE58758.2023.10227244","DOIUrl":null,"url":null,"abstract":"This paper proposes a pose estimation system for robot grasping based on a novel Object Affordance Detection and Segmentation (OADS) network. The proposed system consists of four modules: (1) OADS network; (2) point cloud extraction; (3) object pose estimation; (4) grasp pose estimation. Based on the OADS network, the proposed system achieves affordance-based object pose estimation results. The proposed grasp pose estimation system is evaluated on a laboratory-made dual-arm robot. Experimental results show that the proposed system achieves high detection rate and high accuracy in affordance detection and segmentation tasks, leading to a high success rate in object grasping tasks with lab-made dual-arm robot.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a pose estimation system for robot grasping based on a novel Object Affordance Detection and Segmentation (OADS) network. The proposed system consists of four modules: (1) OADS network; (2) point cloud extraction; (3) object pose estimation; (4) grasp pose estimation. Based on the OADS network, the proposed system achieves affordance-based object pose estimation results. The proposed grasp pose estimation system is evaluated on a laboratory-made dual-arm robot. Experimental results show that the proposed system achieves high detection rate and high accuracy in affordance detection and segmentation tasks, leading to a high success rate in object grasping tasks with lab-made dual-arm robot.