New Nanometric Opportunities with High Mobility Semiconductors such as InAs

H. Hartnagel
{"title":"New Nanometric Opportunities with High Mobility Semiconductors such as InAs","authors":"H. Hartnagel","doi":"10.1109/NANOEL.2006.1609686","DOIUrl":null,"url":null,"abstract":"One-dimensioned electron gas (1DEG) structures can be fabricated from suitable hetero-structure sandwiches by using nano-technology Schottky- or MOS lithography. We have grown by MBE InAs sandwiched nearly lattice matched between AlSb and GaSb layers and obtained for InAs thicknesses of around 15 nm a room temperature mobility of up to 32000cm2/Vs, provided that the heterojunction was of InSb type. At 77K the electron gas has a mobility of up to 225000 cm2/Vs. Si-Nanowires are found to have an interesting band structure, which is different from Si bulk material. The InAs 1DEG exhibits a quantum-physical behaviour at low temperatures of a reasonable well defined quantized staircase conductance of a ballistic electron wave with increasing applied voltage. InAs is a material where such behaviour is expected to occur at not too low temperature. If two such 1DEG structures of slightly different geometry in parallel are applied with a triangular voltage, the difference potential between each of these two 1DEG’s is a pulse sequence. The number of pulses obtained then depends on the amplitude of the triangular voltage. This can be considered as a basic unit for an Analogue-Digital Converter. These concepts were initially outlined by us at one of the European workshops, intended for discussion of new ideas. Such nano-conductance lines and zero-DEG quantum dot electronic structures can be interconnected in such a manner that various types of signal processing can be achieved.","PeriodicalId":220722,"journal":{"name":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOEL.2006.1609686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One-dimensioned electron gas (1DEG) structures can be fabricated from suitable hetero-structure sandwiches by using nano-technology Schottky- or MOS lithography. We have grown by MBE InAs sandwiched nearly lattice matched between AlSb and GaSb layers and obtained for InAs thicknesses of around 15 nm a room temperature mobility of up to 32000cm2/Vs, provided that the heterojunction was of InSb type. At 77K the electron gas has a mobility of up to 225000 cm2/Vs. Si-Nanowires are found to have an interesting band structure, which is different from Si bulk material. The InAs 1DEG exhibits a quantum-physical behaviour at low temperatures of a reasonable well defined quantized staircase conductance of a ballistic electron wave with increasing applied voltage. InAs is a material where such behaviour is expected to occur at not too low temperature. If two such 1DEG structures of slightly different geometry in parallel are applied with a triangular voltage, the difference potential between each of these two 1DEG’s is a pulse sequence. The number of pulses obtained then depends on the amplitude of the triangular voltage. This can be considered as a basic unit for an Analogue-Digital Converter. These concepts were initially outlined by us at one of the European workshops, intended for discussion of new ideas. Such nano-conductance lines and zero-DEG quantum dot electronic structures can be interconnected in such a manner that various types of signal processing can be achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高迁移率半导体(如InAs)的纳米技术新机遇
利用纳米肖特基或MOS光刻技术,可以在合适的异质结构夹层上制备一维电子气体(1DEG)结构。我们已经在AlSb和GaSb层之间生长了几乎晶格匹配的MBE InAs,并且获得了厚度约为15 nm的InAs,室温迁移率高达32000cm2/Vs,前提是异质结为InSb型。在77K时,电子气体的迁移率高达225000 cm2/Vs。硅纳米线具有不同于硅块材料的有趣的带状结构。InAs 1DEG在低温下表现出一种量子物理行为,随着施加电压的增加,弹道电子波具有合理的、定义良好的量子化阶梯电导。InAs是一种材料,这种行为预计在不太低的温度下发生。如果两个几何形状稍有不同的1DEG结构并联在一个三角形电压上,这两个1DEG结构之间的差电位就是一个脉冲序列。然后得到的脉冲数取决于三角电压的幅值。这可以看作是模数转换器的基本单元。这些概念最初是由我们在一个欧洲研讨会上提出的,目的是讨论新的想法。这种纳米电导线和零度量子点电子结构可以相互连接,从而可以实现各种类型的信号处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanostructuring surfaces with slow multiply-charged ions Programming Efficiency of Stacked-Gate Flash Memories with High-κ Dielectrics Identification and rapid screen based on immune sensor Nanotube based Vertical Nano-devices for High Integration Density Investigation of Nano-Scale Single Crystal Silicon Using the Atomistic-Continuum Mechanics with Stillinger-Weber Potential Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1